KCSE PHYSICS PAPER 232/1 2024 ## **MARKING SCHEME.** ## NOTE: - The underlined part indicates the marking point and must be seen in the response or its equivalent as indicated in the side notes. - What is enclosed in the brackets may be omitted in the response. - Formula can be implied in the correct substitution. - CORRECT SUBSTITUTION does not make a wrong formula correct. | NO | EXPECTED RESPONSE. | SIDE NOTES | MAR
KS | |----|---|--|-----------| | 1. | At 3.1cm√ | Do not mark on student's own | 2 | | | The coincidence of the 5 th vernier mark √ | diagram. Mark 2 is dependent of mark 1. 3.0cm mark of the main scale must be indicated. 4.0cm not a must indicated. Coincidence must be before the 4.0 mark. | | | 2. | Weight is (dependent on force of gravity which is) always <u>directed towards the centre</u> (of the Earth/planet/celestial body)(hence a vector quantity.) | | 1 | | 3. | Meta A expands more/faster than B (forcing it to bend inwards). Or Metal A has higher expansivity. | | 1 | | 4. | The <u>turning effect of a force is given by Force x</u> <u>Distance. √/clockwise moment equals anticlockwise</u> <u>moment</u> Heavier child has higher force hence to balance, <u>the</u> <u>distance should be reduced</u> . √ | Emphasis on reduction of distance and balancing(principle of moment) Deny reduction of | 2 | | | | force. | | |-----|---|--|---| | 5. | By leaning on the opposite side. Or | Any one | 1 | | | Raising the opposite/other hand. | | | | 6. | When the piston is pushed inwards, the air above the tube moves faster/with increased velocity/with higher velocity/speed, √ Causing a region of low(er) pressure√ above the tube hence the liquid rises and mixes with air and is sprayed out. The vent allows the higher atmospheric pressure to act on the liquid to push√ it up the tube/higher atmospheric pushes the liquid up/ pressure | | 3 | | 7. | difference causes the liquid to rise up. | positive side | 3 | | | | √ negative side √ complete cycle. Marks are independent. The cycle must start with positive at zero/origin. | | | 8. | Viscosity is friction/resistance (to motion) in fluids. or Friction in fluids. or Resistance in fluids. | Allow friction or resistance alone | 1 | | 9. | $VR = \frac{effort distance\ E.\ d.}{load\ distance\ L.\ d.} = \frac{0.32}{0.2} \sqrt{=1.6} \sqrt{-1.6}$ | If the formula is correct and substitution, award the substitution mark at the formula. | 2 | | 10. | As the bubble rises up, the pressure due to the water column sorrounding the bubble is reduced $\sqrt{}$ therefore | Deny pressure of the bubble. | 2 | | | the volume of the bubble increases $\sqrt{}$. | | | |-----|---|-----------------|----| | | , | Deny bubble | | | | | expand | | | 11. | Fc = mrw^2 | | 3 | | | $= 0.2 \times 1 \times 10^2 \sqrt{=20}$ | | | | | 0.2 X 1 X 10 V 20 VV | | | | | Or | | | | | | | | | | $Fc = \frac{mv^2}{r}$ and $v = \omega r \sqrt{r}$ | | | | | $Fc = \frac{mv^2}{r} = \frac{0.2 \times (1 \times 10)^2}{1} \sqrt{=20N} $ | | | | | $rc = \frac{1}{r} = \frac{1}{1}$ | | | | | | | | | 12. | The object displaces its own weight of the fluid in | | 2 | | | which it floats/law of flotation. √ | | | | | Thi implies that <u>the object is floating</u> √ on/in water. | | | | 13. | a) The random collision of the smoke particles with the | | 1 | | | air particles. | | | | | Or | | | | | Collision of the smoke particles with <u>air particles</u> | | | | | which are in (constant) <u>random/uneven motion</u> . | | | | | b) The rate of collision increases | | | | | (Random) increases. | | | | | Increased velocity. | Any one | 1 | | | Faster movement. | | | | | SECTION TOTAL | | 25 | | SE | CTION B (55 MARKS) | | | | 14. | a) | | | | | i. Relative density is the ratio of density of a | Definition from | 1 | | | substance to the density of water. | first principle | | | | Or | only. | | | | Number of times a substance is denser than water. | · | | | | | | | | | ii. | | | | | Used to determine density of (an unknown) | | | | | substance from the density of water. | | | | | Test for purity of substance eg milk. | Deny mention of | | | | Check the state of charge of a car battery. | an instrument | 2 | | | Check the level of battery charge. | like hydrometer | | | | In geology, to determine mineral content. | only. | | | In brewery, to determine alcohol content. In hydrology, to determine water quality. | (any two) | | |--|---|----| | i. The weight of the balloon (and its content) is greater than the weight of air displaced hence it experiences a small upthrust. On cooling, the volume of the balloon is reduced (density increased), hence balloon experiences reduced upthrust. Average density of balloon increased on cooling. Density of balloon is greater than that of the surrounding air. | (any two) | 2 | | ii. Fill the balloon with a gas which is less dense than air. Fill the balloon with hydrogen or helium. Increase the volume of the air in the balloon (by heating/warming) Inflate the balloon with warm/hot air. Cool the surrounding air/lower the temperature of the surrounding air. Maintain the temperature of the air inside. | Any two (from the fact that the balloon went down on | 2 | | c) Upthrust = weight of the liquid displaced. $\sqrt{\frac{1.1 \times 10}{1}} \sqrt{=11N}$ Or $U = \rho Vg\sqrt{\frac{1000}{1000000} \times 10}$ = 11N $$ | cooling it) | 3 | | | | 10 | | a)
i. | Hooke's law or its correct statement. | Watch out for | 1 | |----------|--|---|--| | | | contradiction | | | ii. | Stand, clamp and boss (accept just stand) | | 1 | | iii. | (recording the length and the mass) determine the extension and force. $$ Plot a graph of Force against extension. $$ It is a straight line through the origin. $$ | | 3 | | | | | | | | _ | | | | | _ | | | | | F/e is constant. √ | | | | b) | $k = \frac{F}{e} = \frac{0.04N}{0.004m} = 10N/m$ | | 3 | | | When e = 0.006m | | | | | | | | | | | | | | | Or $k = \frac{F}{e} = \frac{0.04N}{0.4cm} = 0.1N/cm$ | | | | | When $e = 0.6$ cm | | | | | $F = 0.1 \times 0.6\sqrt{=0.06N}$ | | | | | | | | | | Or | | | | | 0.4cm ===> 0.04N | | | | | | | | | | $F = \frac{0.0 \times 0.01}{0.4} \sqrt{1} = 0.06 N\sqrt{1}$ | | | | | Or | | | | | $F = \frac{0.04}{0.004} \times 0.006 \sqrt{1} = 0.06 N\sqrt{1}$ | | | | | On | | | | | $\frac{F1}{e1} = \frac{F2}{e2}\sqrt{\frac{0.04}{0.004}} = \frac{F2}{0.006}$ | | | | | F2 = 0.06N√ | | | | | i.
ii.
iii. | ii. Hooke's law or its correct statement. iii. Stand, clamp and boss (accept just stand) iiii. (recording the length and the mass) determine the extension and force. $\sqrt{}$ Plot a graph of Force against extension. $\sqrt{}$ It is a straight line through the origin. $\sqrt{}$ Or Determine the extension and force. $\sqrt{}$ Compute F/e = k. (several values.) $\sqrt{}$ F/e is constant. $\sqrt{}$ b) $k = \frac{F}{e} = \frac{0.04N}{0.004m} = 10N/m\sqrt{}$ When $e = 0.006m$ F = $10 \times 0.006\sqrt{} = 0.06N\sqrt{}$ Or $k = \frac{F}{e} = \frac{0.04N}{0.4cm} = 0.1N/cm\sqrt{}$ When $e = 0.6cm$ F = $0.1 \times 0.6\sqrt{} = 0.06N\sqrt{}$ Or $0.4cm ===> 0.04N$ $0.6cm ===> F$ $F = \frac{0.6 \times 0.04}{0.004} \sqrt{4} = 0.06N\sqrt{}$ Or $F = \frac{0.04}{0.004} \times 0.006\sqrt{4} = 0.06N\sqrt{}$ Or $\frac{F1}{e1} = \frac{F2}{e2}\sqrt{}$ $\frac{0.04}{0.004} = \frac{F2}{0.006}\sqrt{}$ | i. Hooke's law or its correct statement. ii. Stand, clamp and boss (accept just stand) iii. (recording the length and the mass) determine the extension and force, $$ Plot a graph of Force against extension. $$ It is a straight line through the origin. $$ Or Determine the extension and force, $$ Compute $F/e = k$. (several values.) $$ F/e is constant. $$ b) $k = \frac{F}{\sigma} = \frac{0.04N}{0.004m} = 10N/m$ When $e = 0.006m$ $F = 10 \times 0.006 = 0.06N$ Or $k = \frac{F}{e} = \frac{0.04N}{0.4cm} = 0.1N/cm$ When $e = 0.6cm$ $F = 0.1 \times 0.6 = 0.06N$ Or $0.4cm = - > 0.04N$ $0.6cm = - > F$ $F = \frac{0.6 \times 0.04}{0.004} = 0.06N$ Or $\frac{F1}{e^2} = \frac{F2}{e^2} \frac{0.04}{0.004} = \frac{F2}{0.006} $ | | | A A A | Using a thinner rod to coil the wire hence reduce the diameter of the spring. Make turns closer so as to have more turns per unit length. Using a shorter piece of wire to have a shorter spring/reduce the length of the spring. Reduce turns to make a shorter spring. Reduce distance between the turns/coils. Compressing spring until elastic limit is reached. | (any two) No mark for shorter wire only. No mark for compressing spring only. | 2 | |-----|--------------------------|---|---|----| | | | | | 10 | | 16. | a)
I.
II. | Switch on the ticker timer and release the ball to fall freely. $$ Get the time between dots from the frequency of the timer. $$ | | 4 | | | III.
IV. | Determine the initial and final velocities. Use $a=\frac{v-u}{t}$ to determine acceleration due to gravity. $\sqrt{}$ | | | | | Or | | | | | | I.
II.
III.
IV. | Switch on the ticker timer and release the ball to fall freely. $\sqrt{}$ Obtain total time for several dots. $\sqrt{}$ Determine u and v. $\sqrt{}$ Measure the distance between u and v and determine the acceleration a(g) using $v^2 = u^2 + 2gS$ or $S = ut + \frac{1}{2}gt^2\sqrt{}$ | | | | | or
I. | Switch on the ticker timer and release the | | | | | II. | ball to fall freely. $$ Using distance charts, obtain the average velocities. $$ | | | | | III.
IV. | Plot a average velocity against time graph. $$ Determine the slope of the graph which is the acceleration due to the gravity a. $$ | | | | required is minimum. Centripetal force = weight | b) At maximium height T = 0 when the velocity required is minimum. Centripetal force = weight of the stone $\frac{mv^2}{r} = mg$ $v = \sqrt{rg}$ | | | |--|--|------------------------------------|----| | $v = \sqrt{1 \times 10} \sqrt{= 3.162 m/s^2}$ | $v = \sqrt{1 \times 10} \sqrt{= 3.162 m/s} \sqrt{\text{ (4 sf a must)}}$ | | | | Or $\frac{mv^2}{r} - mg = T$ | T and $T=0$ | | | | $\frac{mv^2}{r} = mg$ | | | | | $V = 3.162 \text{m/s}$ Or $T = 2\pi \sqrt{\frac{l}{g}}$ | $T = 2\pi \sqrt{\frac{l}{g}}$ $T = \frac{2\pi}{\omega}$ $V = \omega r$ (1 formula mark for the three formulas together) | | | | c) Construction of speed of Separation of mixtures of Launching of satellites. Somersaulting. Banking tracks. Rounding a bend. Merry go round. Turn tables Hammer and discus throwashing machines. | s using centrifuges | Any application of circular motion | 2 | | , and the second | | | 10 | | 17. | a) salt is an impurity which lowers the malting points | | 2 | |-----|---|--------------|---| | 17. | a) salt is an impurity $\sqrt{\text{which lowers the melting point}}\sqrt{\text{which lowers the melting point}}$ | | | | | b) -weight of the solid/force applied/load | | | | | | | 2 | | | -base area/area of contact. (deny surface area) | | 2 | | | c) | | | | | i | | | | | Heat lost (by hot water) = heat gained (by cold water) | | | | | Or | | | | | $m_h c \Delta T = m_c c \Delta T / m_h c \Delta \theta = m_c c \Delta \theta$ | Formula | 3 | | | $2c (70 - \theta) = 3c (\theta - 22) \text{ or } 2 \times 4200 \times (70 - \theta) = 3$ | Substitution | | | | ×4200×(θ - 22)√ | Answer | | | | $\Theta = 41.2^{\circ}C$ | 7 111011 01 | | | | Substitution can also be 2(70 - θ) = 3(θ -22) since c | | | | | cancells out. | | | | | Or | | | | | 2×4200×70 + 3× 4200 × 22 = 5 × 4200 × θ√ | | | | | Θ = 41.2°C√ | | | | | | | | | | Or | | | | | Let the change for cold water be θ. | | | | | New temperature will be 22 + θ | | | | | New temperature change for warm water = 70 -(0+22) | | | | | | | | | | 2c(70-(θ+22)) = 3cθ√ | | | | | | | | | | $\Theta = 19.2^{\circ}C$ | | | | | New temprature = 19.2 +22 = $41.2^{\circ}C$ | | | | | Or | | | | | Let the refence temperature be 20 (or any other | | | | | temp) and change in temperature to the new final | | | | | temperature be θ | | | | | | | | | | $2c(70-20) + 3c(22-20) = (2+3)\theta$ | | | | | 100 + 6 = 50 | | | | | $\Theta = 21.2^{\circ}C$ | | | | | new final temp = 20 + 21.2 = $41.2^{\circ}C$ | | | | | | | | | | or | | | | | | | | | Let the refence temperature be 100 (or any other | | | |--|----------------------------------|----| | temp) and change in temperature to the new final | | | | temperature be θ | | | | $2c(100-70) + 3c(100-22) = (2+3)c\theta\sqrt{60 + 3x78 = 5\theta}$ | | | | 60 + 234 = 50 | | | | θ =58.8°C | | | | 0-38.8 6 | | | | therefore new temprature = 100 -58.8 =41.2 $^{\circ}\text{C}$ | | | | ii. | | 2 | | Heat absorbed by the container. | | | | Conduction by the container. | | | | Evaporation (of the hot water). | Any two | | | Radiation of the heat from the container. | | | | Heat lost through convection. | | | | (deny heat lost to the environment or sorrounding only) | | | | d) | | | | i. | | | | <u> </u> | | | | | | | | | / () 1 | 2 | | 60 | for the shape. $$ for indication | | | 60 | of 60 and t | | | t | or oo ana r | | | | The two marks | | | | are independent. | | | 60 | • | | | | | | | <u> </u> | | | | · | | | | ii. <u>Temperature of the water rises until it</u> | | | | reaches boiling point/100/becomes constant. $$ | | | | When there is change of state at constant | | | | $\sqrt{\text{temperature/constant temperature because}}$ | | | | of absorption of latent heat (of vaporisation) | | | | Latent heat absorbed to change state to gas. | | 2 | | | | 13 | | | | 13 | | 18. | a) Pressure in liquids increases with depth√ | | | | 3 | | |-----|---|---|---|--------------------|---|--| | | | P = $\rho g h \sqrt{pressure}$ at bottom is greater than at the | | | | | | | top | | J | | | | | | Th | e bottom should be t | thicker to <u>withstand the</u> | | | | | | hig | h(er) pressure.√ | | | | | | | | · | | | | | | | b)
i. | $\frac{F1}{A1} = \frac{F2}{A2}\sqrt{}$ | Alt. | | | | | | | $F2 = \frac{200 \times 4}{0.2} \sqrt{}$ | P1 = P2 $\sqrt{P} = \frac{F}{A} = \frac{200}{0.2} = 1000$ | | 3 | | | | | = 4000N√ | $1000 = \frac{F}{4}$ | | | | | | | | F = 4000N√ | | | | | | ii. | | | | | | | | | Water is corrosiv | e (to internal parts) | | | | | | | Water vaporises | | Any two | 2 | | | | | Water has low vis | • | | | | | | | Water has high f | <u> </u> | | | | | | Water has low boiling point | | | | | | | | Water becomes lubricant. | | | | | | | | c) | | | | | | | | i. | | _ E | | | | | | | - L | | All three must be | | | | | | | | labelled correctly | 1 | gure 8 | | | | | | ii. | | rm√ by putting the load as | | | | | | far as possible from the fulcrum.√
Or | | | | 2 | | | | Reducing the effort distance√ by bringing effort closer | | | | | | | | $\sqrt{\text{to the fulcrum/ holding closer}}$. | | | | | | | | | | | | | | | | iii. | Increasing the ef | ficiency | | 1 | | | | | | | | | | | | SECTION TOTAL | | | | | |