For more visit: eazyarabic.com

Name	Index No//
232/1	Candidate's Signature
PHYSICS	
Paper 1	Date:
(Theory) Oct./Nov. 2012	
Oct./Nov. 2012	

2 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL **Kenya Certificate of Secondary Education** PHÝSICS

Paper 1 (Theory) 2 hours

232/1 - Physics Paper 1 8.00 am - 10.00 am Friday 9/11/2012 1st session

Instructions to Candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two sections: A and B.
- (d) Answer all the questions in sections A and B in the spaces provided.
- (e) All working must be clearly shown.
- (f) Non programmable silent electronic calculators may be used.
- (g) This paper consists of 15 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

Section	Question	Maximum Score	Candidate's Score
A	1 - 14	25	
	15	11	
	16	14	
В	17	11	
	18	10	
	19	09	
To	tal Score	80	

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS

Paper 1

SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.

1 Figure 1 shows a measuring cylinder containing some water.

Determine the reading of 0.6 cm ³ are added.	n the measuring cylinder, after three di	rops of water each of volume (2 marks
<u></u>		
A student pulls a block of the reason why the bloc	of wood along a horizontal surface by a moves at a constant velocity.	applying a constant force. State (1 mark)
		i
		
A solid weighs 16.5 N c 1.7 Nkg ⁻¹ . Determine t	on the surface of the moon. The force of the mass of the solid.	of gravity on the moon is (3 marks)

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL
Kenya Certificate of Secondary Education 2012
PHYSICS

Paper 1 22002000

A bottle containing a smelling gas is opened at the front bench of a classroom. State the reason why the gas is detected throughout the room.	(1 marl
Figure 2 shows a flat bottomed flask containing some water. It is heated directly with a value of the flame. Stand Water	very
Hot flame	
Figure 2	
Explain why the flask is likely to crack. (2	2 mark
Charles American in the Control of t	of
State two environmental hazards that may occur when oil spills over a large surface area	OI

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL
Kenya Certificate of Secondary Education 2012
PHYSICS
Paper 1
33002003

912028

			C	.1		
					the temperature and pressure of a gas are vaccessary for the law to hold.	iried at (1 i
State the wasser	1		la o	maat!	ma an a hanizantal sumface is said to be in a	
State the reason v	vny a	steel s	pnere	restn	ng on a horizontal surface is said to be in r	
equilibrium.						(1:
						(1
						(1
						(1
equilibrium.	e resu	lts of a	an exi	 	ent carried out to study the properties of a	
Equilibrium. Table 1 shows th	e resu	lts of a	an exp	oerim	nent carried out to study the properties of a	
equilibrium. Fable 1 shows th			_	,		
Equilibrium. Table 1 shows th	e resu	lts of a	20 4	30 6	nent carried out to study the properties of a	

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL
Kenya Certificate of Secondary Education 2012
PHYSICS
Paper 1
33603000

11 Figure 3 shows a graph of velocity against time for a moving body.

	Describe the motion of the body during the 10 seconds.	(2 marks)
12	State two reasons why the efficiency of a pulley system is always less than 100%.	

Figure 4 shows a graph of temperature against time when pure melting ice at 0°C is heated uniformly.

Explain what happens between parts:

(i)	OA:	
	•	
		(1 mark)
		(IIIIIII)

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS Paper 1

Paper 1
22002006

Turn over

		(ii) AB:	
			1 mark)
14	(a)	An aeroplane is moving horizontally through still air at a uniform speed. It is obset that when the speed of the plane is increased, its height above the ground increase State the reason for this observation.	s. 1 mark)
	(b)	Figure 5 shows parts A, B and C of a glass tube.	
		• A • B • C	
		Figure 5	· · · · · · · · · · · · · · · · · · ·
		State with a reason the part of the tube in which the pressure will be lowest when is blown through the tube from A towards C. (2)	air 2 marks)

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS Paper 1

SECTION B: (55 marks)

Answer all the questions in this section in the spaces provided.

15 (a) Figure 6 shows a graph of volume against temperature for a given mass of gas.

Use the graph to determine the absolute zero temperature in °C.	(2 marks)

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS Paper 1

912028

Paper 1 22002006

(b) **Figure 7** shows a horizontal tube containing air trapped by a mercury thread of length 24 cm. The length of the enclosed air column is 15 cm. The atmospheric pressure is 76 cm Hg.

Figure 7

(i) State the pressure of the enclosed air. (1 mark)

(ii) The tube is now held in a vertical position with the open end facing upwards as shown in **Figure 8**.

Determine:

(I)	The pressure of the enclosed air.	(1 mark)
	,	

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS

Paper 1 220020003

		(II) The length (t) of the enclosed air column.	(3 marks)
(c)	with	experiment to demonstrate atmospheric pressure, a plastic bottle hot water and the bottle is then tightly corked. After some time theformed.	
	(i)	State the purpose of the hot water.	(1 mark)
	(ii)	State the reason why the bottle gets deformed.	(1 mark)
	••••••	4	
	(iii)	Explain your answer in c (ii)	(2 marks)

	•••••		
(a)	Figu	re 9 shows a trolley on a smooth surface being pulled by a consta	nt force F.

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS

Paper 1

State A ball of material esistance is determine; i) the results of the results	ate the reason	ing through the air attains termin why it attains terminal velocity.	(1 m
State A ball of material esistance is determine; i) the results of the results	ate the reason	why it attains terminal velocity.	nal velocity after a short-time. (1 m
State A ball of material esistance is determine; i) the results of the results	ate the reason	why it attains terminal velocity.	nal velocity after a short-time. (1 m
State A ball of material esistance is determine; i) the results of the results	ate the reason	why it attains terminal velocity.	(1 m
A ball of maresistance is Determine; i) the r			
A ball of maresistance is Determine; i) the r			
A ball of maresistance is Determine; i) the r			
Determine; i) the r			· · · · · · · · · · · · · · · · · · ·
i) the r	mass 200 g is t is 0.4 N.	thrown vertically upwards with	velocity of 5 ms ⁻¹ . The air
);		
(take	e net force on	the ball as it moves up;	
	ke acceleratio	on due to gravity $g = 10 \text{ ms}^{-2}$)	. (2 ma
		0 ,7 0	(
•••••			
ii) the a		of the ball;	(3 ma
•••••	e acceleration	······································	
	e acceleration		
••••••	e acceleration		

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012
PHYSICS Paper I 220020005

(iii)	the maximum height reached by the ball. (3 i	narks)
Figur Whirl	re 10 shows the path of an object of mass in attached to a string of length r welled in a vertical circle at a constant speed V. A is the highest point on its path Object String Motion	hen
	Figure 10	
(i)	State the forces that provide the centripetal force on the object when it is a point A. (2	t marks
(ii)	Indicate with an arrow on the diagram the direction of the net force F acting on the object when it is at A.	g I mark
Figur and th	re 11 shows how an underground room was ventilated. It had two vents, one he other at B. A fire was lit at point C.	at A

Figure 11

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS

Paper 1

912028

17

220020003

Expla	Explain what happened to the ventilation when the fire was lit.		
(b)	Explain how a vaccum flask minimizes loss of heat through radiation.	(1 mark)	
(c)	In an experiment to investigate the unusual expansion of water, a fixed at 0 °C was heated until its temperature reached 20 °C. On the axis provegraph of density against temperature of the water from 0 °C to 20 °C.	mass of water vided, sketch a (2 marks)	
	density (g/cm³)		
	temperature (°C)		
(d)	An immersion heater rated 2.5 kW is immersed into a plastic jug containing 2 kg of water and switched on for 4 minutes. Determine;		
	(i) the quantity of heat gained by the water;	(2 marks)	
	(ii) the temperature change for the water; (take specific heat capacity of water as $4.2 \times 10^3 \text{ Jkg}^{-1} \text{ K}^{-1}$).	(3 marks)	

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012
PHYSICS
Paper 1
320020008

18 (a) Figure 12 shows a set up used to determine the mass of a solid S. The rod is pivoted at its centre of gravity C.

Figure 12

(i)	State two measurements that need to be made to determine the mass of sol (id S. 1 mark)
(ii)	Write an expression to show how the measurements in (i) above are used to obtain the mass of S. (2)	o ! marks)
	e 13 shows a log of wood of mass 20 kg submerged in water in a pond and hition by a string fixed to the bottom of the pond.	neld

Given that the density of water is 1000 kgm⁻³ and that of wood is 800 kgm⁻³, determine the:

(i)	Volume of the log.	(3 marks)

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS

Paper 1 **33003000**

Turn over

912028

(b)

	(ii) Upthrust on the log.	(2 marks)
	(iii) Tension in the string.	(2 marks)
19 (a)	Figure 14 shows a lift pump.	
	Piston Valve B Valve A Water Figure 14	
	Explain why, when the piston is:	
	(i) pulled upwards, valve A opens while valve B closes.	(2 marks)
	(ii) pushed downwards, valve A closes while valve B opens.	(2 marks)

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS Paper 1

Paper 1 220020005

(b) After several strokes, water rises above the piston as shown in Figure 15.

	State how water is removed from the cylinder through the spout.	(1 mark)
(c)	A lift pump can lift water to a maximum height of 10 m. Determine the maximin height to which the pump can raise paraffin. (take density of paraffin as 800 kgm ⁻³ and density of water as 1000 kgm ⁻³).	um (3 marks)
••••••		••••••
(d)	State one factor that determines the height to which a force pump can lift water.	(1 mark)
		(1 1

THIS IS THE LAST PRINTED PAGE.

© 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 2012 PHYSICS Paper 1 220020003