| Name | Index Number/ | |-----------------|-----------------------| | 232/2 | Candidate's Signature | | PHYSICS Paper 2 | Date | | (Theory) | | | Oct./Nov. 2012 | | | 2 hours | | ### THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education **PHYSICS** Paper 2 (Theory) 2 hours 232/2 - Physics Paper 2 Monday 11.45 am - 1.45 pm12/11/2012 (2nd Session) # Instructions to candidates - (a) Write your name and index number in the spaces provided above. - (b) Sign and write the date of examination in the spaces provided above. - (c) This paper consists of **TWO** sections; **A** and **B**. - (d) Answer ALL the questions in sections A and B in the spaces provided. - (e) All working MUST be clearly shown. - (f) Non-programmable silent electronic calculators and KNEC mathematical tables may be used. - (g) This paper consists of 16 printed pages. - (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. ### For Examiner's Use Only | Section | Questions | Maximum
Score | Candidate's
Score | |---------|--------------------|------------------|-------------------------| | A | 1–13 | 25 | | | | 14 | 12 | | | | 15 | 11 | | | В | 16 | 12 | OVER DESCRIPTION OF THE | | | 17 | 10 | | | | 18 | 10 | | | | Total Score | 80 | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS PHYSICS Paper 2 THEORY -912029 220020007 Turn over Visit: www.kcse-online.info for professional educational resources ### SECTION A (25 marks) Answer ALL the questions in this section in the spaces provided. 1 Figure 1, shows a plane mirror XY placed equidistant from two parallel lines AB and PT. Figure 1 Four students stand at P, Q, R and T in front of the mirror - (a) Indicate the positions of the images of students at Q, R and T on line AB. (1 mark) - (b) State which of the three images are visible to the student standing at P. (1 mark) (c) Using rays indicate on the figure, how (b) above is possible. (1 mark) **Figure 2**, shows two mirrors PQ and QR inclined at an angle of 110°. A ray of light is incident on mirror PQ at an angle of 60°. Figure 2 Complete the diagram to determine the angle of reflection of the ray in the mirror QR. (3 marks) © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY 220020007 **Figure 3**, shows four identical light bulbs connected to a 15 volt battery whose internal resistance is negligible. Figure 3 | Determine the reading of the voltmeter V. | (2 marks) | |---|-----------| | | | | | | | | | | | | | | | 4 Figure 4, shows a negative point charge placed near a positively charged rod. Figure 4 Draw on the diagram, the resulting electric field pattern. (2 marks) © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY 912029 220020007 Figure 5, shows an object O at the bottom of a beaker full of a liquid. An observer above the beaker sees its image at point X inside the liquid. Figure 5 | Determine the refractive index of the liquid. | (3 marks) | |---|-----------| | | | | | | | | | | | | | | | **Figure 6**, shows a narrow beam of radiation from a radioactive source, incident to a postcard. The emergent radiation passes through a magnetic field which is perpendicular to the plane of the paper, and into the paper. Figure 6 © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY | | A detector moved along line AC detects radiations only at points B and C. State the two types of radiations detected. (1 mark) | |---|---| | | | | 7 | Figure 7, shows two similar coils P and Q around the end L and M of a piece of soft iron. A steady current passes through the coils. P Q Soft iron Figure 7 | | | State the polarity of the resulting magnet at end L. (1 mark) | | 8 | Light from a lamp falls on the cap of a negatively charged electroscope. It is observed that the divergence of the leaf decreases. Explain the observation. (2 marks) | | | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY Figure 8, shows an object O placed in front of a diverging lens whose principal focus is F. Figure 8 On the figure, draw a ray diagram to locate the image formed. (3 marks) Figure 9, shows the cross-section of an optical fibre made of two types of glass, A and B. The refractive index of B is lower than that of A. A ray of light enters the optical fibre at P and emerges from Q. | (1) | Sketch the path of the ray through the fibre. | (1 mark | |------|---|---------| | (ii) | State the reason why light travels through the fibre as in (i) above. | (1 mark | | | | | | | Δ | •••••• | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY 912029 | 11 | Figure 10 , shows the cross section of a conductor held between two magnets and carry | ing a | |----|--|-------| | | current out of the paper. | | Figure 10 Indicate with an arrow on the diagram the direction in which the conductor will move when it is released. (1 mark) | 12 | State why alternating current (a.c.) is used for transmitting electricity over long distances. | |----|--| | | (1 mark) | | | | | | | | | | | | | | | | Figure 11, shows an alternating current (a.c.) connected across a diode D and a resistor R. Figure 11 On the axes provided sketch the output as observed in the C.R.O. connected across R. (1 mark) © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 Paper 2 THEORY 912029 **220020007** # SECTION B (55 marks) Answer ALL the questions in this section in the spaces provided. 14 (a) Figure 12, shows a displacement – time graph for a progressive wave. Displacement (cm) 5 10 15 20 25 30 35 40 45 50 55 time (s) Figure 12 | (i) | State the amplitude of the wave. | (1 mark) | |-------|---|-----------------| | | | | | | | | | (ii) | Determine the frequency of the wave. | (4 marks) | | | | | | | | | | | | | | (iii) | Given that the velocity of the wave is 20 ms ⁻¹ , determine its wavelength | 1.
(3 marks) | | | | | | | | | | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 | | 912029 THEORY (b) **Figure 13** shows two identical dippers A and B vibrating in water in phase with each other. The dippers have the same constant frequency and amplitude. The waves produced are observed along line MN: Figure 13 It is observed that the amplitudes are maximum at points Q and S, and minimum at points P and R. | (i) | Explain why the amplitude is maximum at Q. | (2 marks) | |-------|---|-----------| | | | | | | | | | (ii) | State why the amplitude is minimum at R. | (1 mark) | | | | | | | | | | (iii) | State what would happen if the two dippers had different frequencies. | (1 mark) | | | | | | | | | | | | | | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL | | | | Kenya Certificate of Secondary Education, 2012 | | | | PHYSICS | | | | Paper 2 | | | | THEORY | | 912029 Figure 14, shows a circuit in which a battery, a switch, a bulb, a resistor P, a variable resistor Q, a voltmeter V and two ammeters A_1 and A_2 of negligible resistance are connected. Figure 14 P has a resistance of $10\,\Omega$. When the switch is closed A_1 reads $0.10\,A$ and the voltmeter reads $1.5\,V$. | Determine; | | | |------------|--------------------------------|-----------| | (i) | the current passing through P; | (3 marks) | | | | | | | | | | | | | | (ii) | the resistance of the bulb. | (2 marks) | | | | | | | | | | | | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY 220020007 912029 (a) | | (b) | The v | variable resistor Q is now adjusted so that a larger current flows through A_2 . | | |--------|-----|-------|---|-----------| | | | (i) | State how this will affect the resistance of the bulb. | (1 mark) | | | | (ii) | Explain your answer in (b)(i). | (2 marks) | | | | | | | | | (c) | havin | use has one 100 W bulb, two 60 W bulbs and one 30 W bulb. Determine ag all the bulbs switched on for 70 hours, given that the cost of electricity ents per kilowatt hour. | | | | | | | | | 16 | (a) | | COLLA SA SA COLLA | | | | | | Figure 15 | | | | | (i) | The switch is now closed. State the observation made on the galvano | (2 marks) | | | | | | | | | | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 | | | 912029 | 9 | | THEORY
320020007 | Turn over | | | (ii) | Explain what would be observed if the switch is then opened. | (2 marks) | |-----|-------|--|-------------------------| | | | | | | | | | | | (b) | The p | primary coil of a transformer has 1000 turns and the secondary coil has 2 | 00 turns. | | | The p | primary coil is connected to a 240 V a.c. mains, supply. | | | | (i) | Explain how an e.m.f. is induced in the secondary coil. | (2 marks) | | | | | | | | | | | | | (ii) | Determine the secondary voltage. | (3 marks) | | | | | | | | | | | | | | | •••• | | | (iii) | Determine the efficiency of the transformer given that the current in the coil is 0.20A and in the secondary coil it is 0.80A. | ne primary
(3 marks) | | | | | ••••• | | | | | ••••• | | | | | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY 912029 17 Figure 16, shows a graph of magnification against object distance, for an object placed (a) in front of a lens of focal length 20 cm. Figure 16 Using the graph; | (i) | State the effect on the size of the image when the object distance is increased | | | | |-----|---|----------|--|--| | | from 25 cm. | (1 mark) | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY | (ii) | Determine the distance between the object and the lens when the image is the same size as the object. (2 ma | | |-------|---|------| | | | | | | | | | | | | | (iii) | Determine the image distance when the object distance is 25 cm. (3 mag) | rks) | | | | | | | | | | | | | (b) Figure 17 shows an object O placed in front of a converging mirror of focal length 15 cm. Figure 17 | | Draw on the figure a ray diagram to locate the image formed. | (3 marks) | |-----|--|-----------| | (c) | State why parabolic reflectors are used in car headlights. | (1 mark) | | | | | | | | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY 220020007 **18** Figure 18 shows the parts of an x-ray tube. (a) Figure 18 | Explain why: | | | |--------------|---|------------------| | (i) | A potential difference is applied to the filament. | (2 marks) | | | | | | (ii) | A high potential difference is applied between the cathode and the anoc | le.
(2 marks) | | | | | | (iii) | Most of the tube is surrounded by lead. | (1 mark) | | | | | © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY 912029 220020007 | (b) | State how the resulting x-rays are affected by increasing the potential difference the anode and the cathode. | e between
(1 mark) | |-----|---|--| | | | ······································ | | | | •••••• | | (c) | Light of frequency 7.5×10^{14} Hz strikes a metal surface whose work function 4.0×10^{-19} J. Determine the kinetic energy of the emitted photoelectrons. | is | | | (take planks constant $h = 6.63 \times 10^{-34} J_s$) | (4 marks) | | | | | | | | | | | | | | | | | ## THIS IS THE LAST PRINTED PAGE. © 2012 THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education, 2012 PHYSICS Paper 2 THEORY 912029