Name	Index Number
232/1	Candidate's Signature
PHYSICS	
Paper 1	Date
Nov. 2016	

2 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

Kenya Certificate of Secondary Education

PHYSICS

Paper 1 (THEORY)

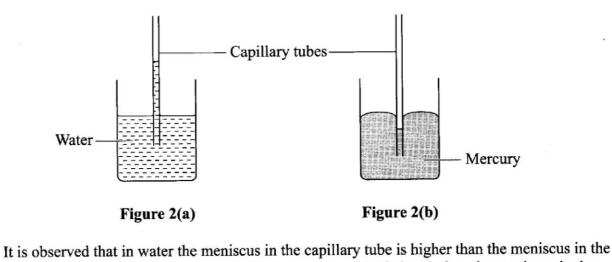
2 hours

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two sections; A and B.
- (d) Answer all the questions in sections A and B in the spaces provided.
- (e) All workings must be clearly shown.
- (f) Silent non programmable electronic calculators may be used.
- (g) This paper consists of 16 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Section	Question	Maximum Score	Candidate's Score
A	1–13	25	
	14	13	
	15	13	
В	16	10	
	17	11	
	18	08	
	Total Score	80	a



SECTION A: (25 marks)

Answer all the questions in this section in the spaces provided.

	Answer all the questions in this section in the spaces provided.	
State	what mechanics as a branch of physics deals with.	(1 maŕk)
		••••••••
Figu	are 1 shows a change in volume of water in a measuring cylinder when an irregularised in it.	ar solid is
	260 cm ³ 240 220 200 180 160 140 120 100 80 60 40 20 100 100 100 100 100 100 100 100 100	*
	Figure 1	
Giv	ven that the mass of the solid is 567 g, determine the density of the solid in g/cm ³ ve your answers correct to 2 decimal places).	(3 marks)
••••		
4	hen a drop of an organic acid of known volume is dropped on the surface of wate ough, it spreads to form a large circular patch. State one assumption made when the olecule of the acid is estimated by determining the area of the patch.	r in a large ne size of the (1 mark)
		••••••••
•••		

4. Figure 2(a) and 2(b) show capillary tubes inserted in water and mercury respectively.

beaker, while in mercury the meniscus in the capillary tube is lower than the meniscus beaker. Explain these observations.	(3 marks)
1	

5. Figure 3 shows a hot water bath with metal rods inserted through one of its ends. Some candle wax is fixed at the end of each rod. Use this information to answer questions 5(a) and 5(b).

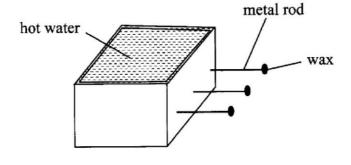


Figure 3

(a)	What property of metals could be tested using this set-up?	(1 mark)
		,
(b)	Besides the length of the rods that is kept constant, what else should be when comparing the property for the different metal rods?	(1 mark)

6. Figure 4 shows a uniform light bar resting horizontally on corks floating on water in two beakers A and B.

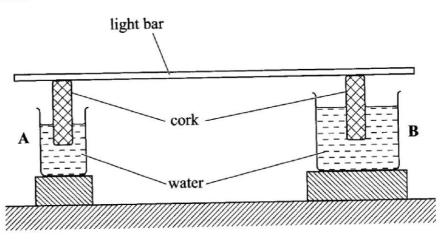


Figure 4

Explain why the bar tilts towards side A when equal amount of heat is supplied to each beautiful to ea	пагк
	•••••

7. Figure 5 shows an aluminium tube tightly stuck in a steel tube.

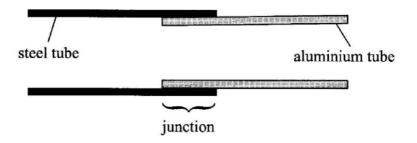


Figure 5

	Explain how the two tubes can be separated by applying a temperature change at the junction		
	given that aluminium expands more than steel for the same temperature rise. (2 r		
	•••••		
8.	(a)	An aeroplane is moving horizontally through still air at a uniform speed. It is observed that when the speed of the plane is increased, its height above the ground increases. State the reasons for this observation. (1 mark)	
120			
	(b)	Figure 6 shows parts A, B and C of a glass tube.	
		• A • B	

Figure 6

State with a reason the part of the tube in which the pressure will be lowest when air is b through the tube from A towards C. (2)	lown marks
	••••••
	• • • • • • • • • • • • • • • • • • • •
The three springs shown in Figure 7 are identical and have negligible weight. The extens produced on the system of springs is 20 cm.	ion
20N	
Figure 7	
Determine the spring constant of each spring. (2 1	narks)

10. Figure 8 shows two cylinders of different cross-sectional areas connected with a tube. The cylinders contain an incompressible fluid and are fitted with pistons of cross-sectional areas 4 cm² and 24 cm².

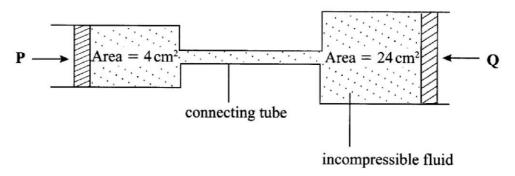


Figure 8

Opposing forces \mathbf{P} and \mathbf{Q} are applied to the pistons such that the pistons do not move. If the pressure on the smaller piston is 5N/cm^2 , determine force \mathbf{Q} . (2 marks)		
	••	
	••	
Figure 9 shows a uniform cardboard in the shape of a parallelogram.		
Figure 9		
Locate the centre of gravity of the cardboard. (1 mark	:)	
State why it is easier to separate water into drops than to separate a solid into smaller pieces. (1 mark	:)	
	•	

11.

12.

13. The graph in Figure 10 shows the velocity of a car in the first 8 seconds as it accelerates from rest along a straight line.

Determine the distance travelled 3.0 seconds after the start.

(2 marks)

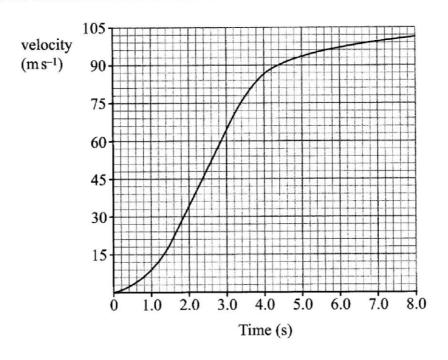


Figure 10

SECTION B: (55 marks)

Answer all the questions in this section in the spaces provided.

14.	(a)	Explai	in why it is advisable to use a pressure cooker for cooking at high altitude	es. (2 marks)
	(b)	water water	of mass 3.0 Kg at 20 °C is heated in an electric kettle rated 3.0 KW. The is heated until it boils at 100 °C. Given that the specific heat capacity of $= 4200 \mathrm{J K g^{-1} K^{-1}}$, heat capacity of the kettle $= 450 \mathrm{J K^{-1}}$, specific latent porisation of water $= 2.3 \mathrm{MJ K g^{-1}}$.	
		Deter	mine:	
		(i)	the heat absorbed by the water.	(3 marks)
		(ii)	heat absorbed by the electric kettle.	(2 marks)
				••••••
		(iii)	the time taken for the water to boil.	(3 marks)

Kenya Certificate of Secondary Education, 2016 232/1

	(iv)	how much longer it will take to boil away all the water.	(3 marks)
15. (a)	State	the meaning of the term ideal gas.	(1 mark)

(b) The pressure acting on a gas in a cylinder was changed steadily while the temperature of the gas was maintained constant. The value of volume V of the gas was measured for various values of pressure. The graph in **Figure 11** shows the relation between the pressure P, and the reciprocal of volume, \(^1\lambda_v\).

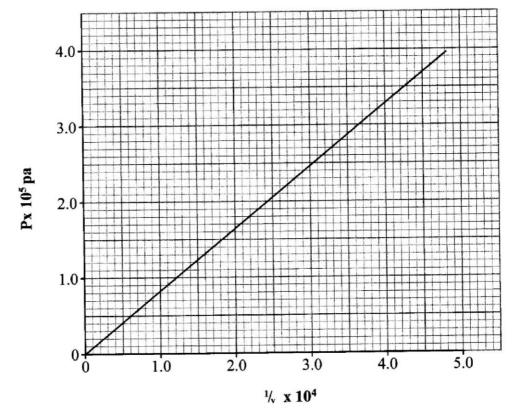


Figure 11

(i)	Suggest how the temperature of the gas could be kept constant.	(2 marks)
		••••••
		•••••
(ii)	Given that the relation between the pressure P_1 and the volume, V_1 of the given by $PV = K$, where K is a constant, use the graph to determine the	e gas is value of <i>K</i> . (4 marks)
(iii)	What physical quantity does K represent?	(1 mark)
		•••••
(iv)	State one precaution you would take when performing such an experim	ent. (1 mark)
pressu	occupies a volume of 4000 litres at a temperature of 37 °C and normal at are. Determine the new volume of the gas if it is heated at constant pressure atture of 67 °C (Normal atmospheric pressure, $P = 1.01 \times 10^5 \text{ Pa}$).	ire to a
tempe		(4 marks)
	······································	
		••••••
		•••••

(c)

16.	(a)	Define the term velocity ratio of a machine.	(1 mark)
			······································

(b) Figure 12 shows part of a hydraulic press. The Plunger is the piston where effort is applied while the Ram piston is the position where the load is applied. The Plunger has cross-section area $a \, \text{m}^2$ while the Ram piston has cross-section, $A \, \text{m}^2$.

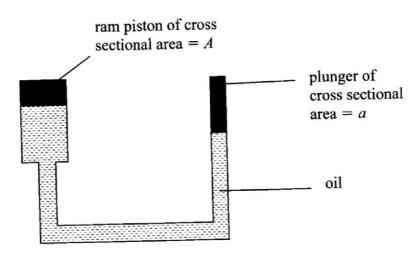


Figure 12

When the Plunger moves down a distance d the Ram piston moves up a distant Derive an expression for the Velocity Ratio (V.R.) in terms of A and a .	(4 marks)
A machine of velocity ratio 45 overcomes a load of 4.5×10^3 N when an effect is applied. Determine:	ort of 135 N
(i) the mechanical advantage (M.A) of the machine;	(2 marks

(c)

		(ii)	efficiency of the machine;	(2 marks)
				••••••
				••••••
		(iii)	the percentage of the work that goes to waste.	(1 mark)
99				

				•••••
				••••••
17.	(a)	When what p	a bus goes round a bend on a flat road, it experiences a centripetal force. provides the centripetal force.	State (1 mark)
	(L)	Ctata t	h	
	(b)	State t		(2 marks)

	(i)	Determine the slope, s, of the graph.	(2 marks)
			······································
	(ii)	Given that $U^2 = 20 kd$, where k is constant for the bench surface, detervalue of k from the graph.	mine the (2 marks)
(c)	A car of mass 800 Kg starts from rest and accelerates at 1.2 ms ⁻² . Determine its momentum after it has moved 400 m from the starting point.		ts (3 marks)

THIS IS THE LAST PRINTED PAGE.