

121/2 MS MATHEMATICS ALT. A Paper 2 March 2021 MARKING SCHEME

THE KENYA NATIONAL EXAMINATINOS COUNCIL

Kenya Certificate of Secondary Education

MATHEMATICS Alt. A Paper 2

MARKING SCHEME (CONFIDENTIAL)

THIS MARKING SCHEME IS THE PROPERTY OF THE KENYA NATIONAL EXAMINATIONS COUNCIL AND MUST BE RETURNED TO THE KENYA NATIONAL EXAMINATIONS COUNCIL AT THE END OFMARKING.

This marking scheme consists of 16 printed pages.

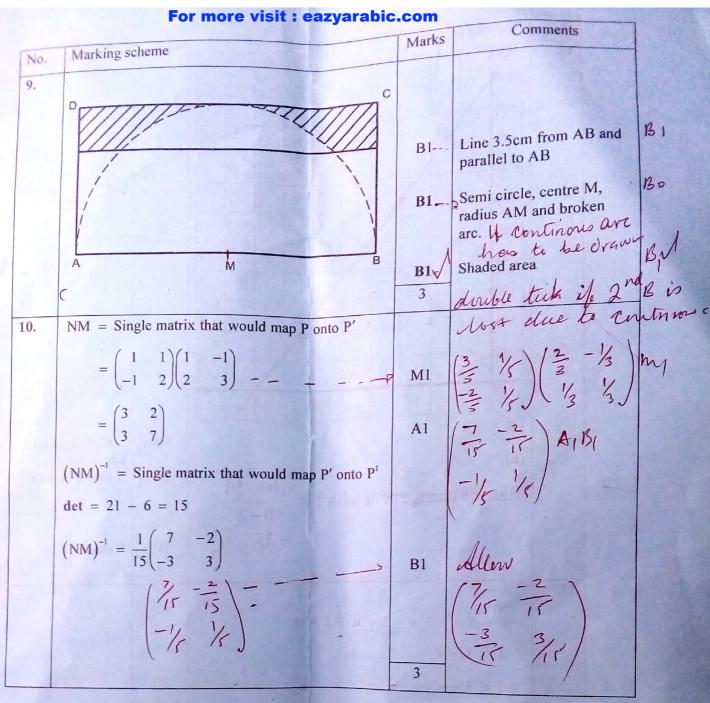
@ 2020 The Kenya National Examinations Council.

Turnover

For more visit: eazyarabic.com

121/2 MATHEMATICS ALT. A

SECTION I


	hame	Marks	Comments	
No.	Marking scheme Let the ratio of maize to millet $= x : y$			
1.				
	$60x + 90y = 85\sqrt{-}$	241	Or equivalent 60	
	x + y	M1	or iguivació.	8
	60x + 90y = 85x + 85y			
	$25x = 5y \qquad 60x + 90(1-x) = 85$		5	
			o r equivalent	
	$\frac{x}{v} = \frac{1}{5}$	E KENY KAN B		
		4		
	x:y=1:5			
	% of maize flour = $\frac{1}{6} \times 100\%$	MI	5/30×100° accept 16.67	
	6	114	/30	
	$=16\frac{2}{3}\%$	Apri	accept 16.67	
	rati	0		
2.	Let the first term be a and the common differen	nce r		
	a + ar = 20(i)			
	$ar + ar^2 = 30(ii)$			
	20	M1	For both equalio	
	from (i), $a = \frac{20}{1+r}$	G SCHILLING IS	For both equalion correctly fermed	
	THE PARTY OF THE PARTY OF THE PARTY CONTROL OF THE	TINS COERCIN		
	from (ii) $a = \frac{30}{r + r^2}$			
	$\frac{20}{1+r} = \frac{30}{r+r^2}$	mı	150 15: 10	
		MT	Rquation in	
	$2r^2 + 2r = 3 + 3r$		me Variable	
	$2r^2 - r - 3 = 0$			
	(r+1)(2r-3)=0			
		M1	Corvect attempt	
	$r = \frac{3}{2} = 1.5 = 1 \frac{1}{4}$		to solve.	
	neme consultation of the consultation and an arms	A1		
	The second secon	A1	Accept /h m/8	
ALC: NO		4		

 $ar + ar^2 = 30$ $ar + ar^2 = 30$

No.	Marking scheme	Marks	Comments
3.	$\frac{1}{\sin 75^\circ} = \frac{4}{\sqrt{6} + \sqrt{2}}$ $= \frac{4(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}$ $= \frac{4(\sqrt{6} - \sqrt{2})}{6 - 2}$ $= \sqrt{6} - \sqrt{2}$	M1 A1 2	Denominor rationalized
4.	$(a)\left(1 - \frac{3}{10}x\right)^{5} = 1 + 5 \times 1 \times \left(\frac{-3x}{10}\right) + 10 \times 1 \times \left(\frac{-3x}{10}\right)^{2}$ $+ 10 \times 1 \times \left(\frac{-3x}{10}\right)^{3} + 5 \times 1 \times \left(\frac{-3x}{10}\right)^{4} + \left(\frac{-3x}{10}\right)^{5} /$ $= 1 - \frac{3}{2}x + \frac{9}{10}x^{2} - \frac{27x^{3}}{100} + \frac{81x^{4}}{2000} - \frac{243x^{5}}{1000000}$		Indael daparent correct. Confession mud be fraction
	(b) When $x = 0.1$, $ \left(1 - \frac{3}{10} \times \frac{1}{10}\right)^{5} \approx 1 - \frac{3}{2} \times \frac{1}{10} + \frac{9}{10} \times \left(\frac{1}{10}\right)^{2} - \frac{1}{10} \times \left(\frac{1}{10}\right)^{2} = \frac{1}{10} \times \left($	M1 A1	Substitulion in the 1st three larms' Accept 559
C Si	$AC = \sqrt{(15^2 + 8^2)} = \sqrt{289} = 17$ $DC = 8.5$ $DF = \sqrt{5^2 + 8.5^2} = \sqrt{97.25} = -$ $= 9.862$ $\ln \frac{1}{2}\theta = \frac{7.5}{9.862}$ $\theta = \sin^{-1} 0.7605$ $\theta = 2 \sin^{-1} 0.7605$	M1	Using cosine rule $\cos \theta = \frac{2 \times 9.862^2 - 15^2}{2 \times 9.862^2}$ $= -0.1567$ $\theta = 99.01$
	$\theta = 2 \times 49.51 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $	M1 . A1	2×9.862 ² -15 ² 2×9.862 ² last method ribe all other nethod exhaused
	d = tan 1.171 d = 49.5x2.		3 Page

= 99.

	Marks Comments
No. Marking scheme	box's enly /4
No. Marking series 6. $y = kx^n$ $320 = k \times 16^n (i)$ $2560 = k \times 64^n (ii)$ $\frac{320}{16^n} = \frac{2560}{64^n} \Rightarrow \frac{1}{2^{4n}} = \frac{8}{2^{6n}}$ $\frac{2^{6n}}{2^{4n}} = 2^3 \qquad 250 = 4$	n=-3 log 2 n=-3 log 2 -2 log 2 = +1.8 An eliminated melguation in m
2^{4n} $2^{2n} = 2^{3}$ $2n = 3$ $n = \frac{3}{2} = 1.5$ Since n is an	MI lquating the indices Al Accept 3/2 m//2. Inden to read.
7. (a)	Tangent at N √ ly constructed Construct 6 ° N
(b)	B1 Radius at an Z of 120° 2nd Januar to ON constructed Tangent intersecting MN at 60° constructed 3
8. $15x - 4 = 2^{7}$ $15x - 12 = 2^{7}$ $15x - 12 = 128$ $15x = 140$ $x = 9\frac{1}{3}$	MI Valropping of loss. MI Simply to Single 1 All term in either side 1
9.333 Accept. An = 8 2n = 2	3 4 Page

$$\frac{3(2^{-1})}{3(1^{-1})} \frac{1}{3(1^{-2})} \frac{1}$$

No. Marking scheme		Comments
11. $\frac{1}{100}$ $\frac{1}{90}$ $\frac{1}$	Bt P ₁ Bt L ₁ B1 3	At 1.5, $h=64$. At 1.5, $h=64$. At 2.1, $h=46$. (3.9 $\stackrel{?}{\sim}$ $\stackrel{?}{\sim}$) V plotting of all 7 powers coordinates $\stackrel{?}{\sim}$ line of best fit V gradient

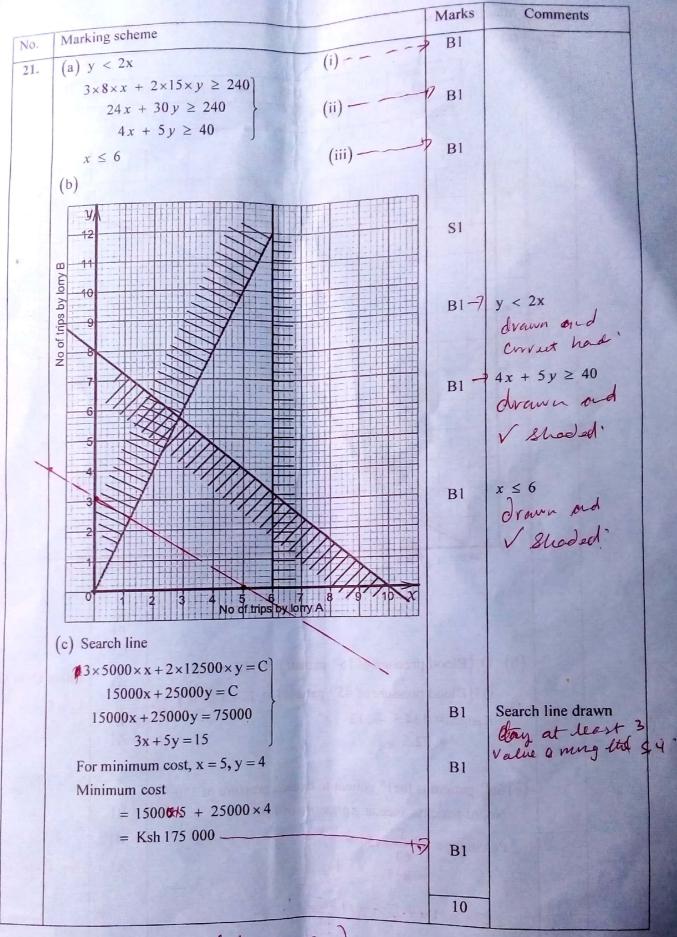
		Marks	Comments
No.	Marking scheme	Marke	
13.	Amount borrowed = $27500 - 17250 = 10250$		
	Amount paid back = $6 \times 2100 = 12600$		
		M1	
	$10250 \left(1 + \frac{r}{100}\right)^6 = 12600 - \frac{r}{100}$		
			for the 6th root.
	$1 + \frac{r}{100} = \sqrt[6]{1.229}$	M1	ger the
	= 1.035		
	r = 3.5% p.m	A1	
		3	
(1			
14.	$\sin^2\theta - \cos^2\theta = -\frac{1}{2}$	M1	for substitut.
	$\sin^2\theta - \left(1 - \sin^2\theta\right) = -\frac{1}{2}$	IVII	of Costo or equivale
	$2\sin^2\theta = \frac{1}{2}$		
	$\sin^2\theta = \frac{1}{4}$		1
		A1	Allow A1 for $\sin \theta = \frac{1}{2}$
	$\sin \theta = \pm \frac{1}{2}$		Allow B1 for 2 or 3+
	$\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	B2	for 2 angle
		4	•
15.	$\mathbf{PQ} = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$		
	$PQ = \begin{vmatrix} 3 \\ 1 \end{vmatrix} - \begin{vmatrix} -1 \\ 2 \end{vmatrix} = \begin{vmatrix} 4 \\ -2 \end{vmatrix}$		
	$\mathbf{PR} = \begin{pmatrix} 6 \\ 9 \\ -2 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \\ -5 \end{pmatrix}$		
	$\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} -5 \end{pmatrix}$		
	(5) (2)		
	$ \begin{pmatrix} 5 \\ 10 \\ -5 \end{pmatrix} = 1 \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix} $	M1	or equivalent
	$k = \frac{2}{5}$	A1	
	$PQ = \frac{2}{5} PR. \text{ Thus } PQ PR $	7. BI	- ber Cincluse
	P is a common point) DI	- gor where
	-P, Q and R are collinear.	3	

No.	Marking scheme		Marks	Comments
16.	$S = \int_{0}^{4} (t^{2} - 4t + 6) dt$	1000		
	$= \left[\frac{t^3}{3} - 2t^2 + 6t \right]_0^4 - \frac{1}{2}$	7	MI	Vintegral with limits ber sabshout
	$= \left(\frac{64}{3} - 2 \times 16 + 6 \times 4\right) - 0$	9	M1 -	ber sector hours
	$= 13\frac{1}{3} \text{ M} $		A1	
			3	

Interpreted no hunts m!

For more visit : eazyarabic.com

	SECTION II (50 MARKS)	Marks	Comments
No.	Marking scheme	1	
17.	(a) Tractor 2 alone takes $(5-1\frac{2}{3}) = 3\frac{1}{3} \text{ hV}$	- 7 B1	for 3/3 hrs.
	Fraction of work done by tractor P and Q in 1 hour $= \frac{1}{5} + \frac{1}{3\frac{1}{3}} = \frac{1}{5} + \frac{3}{10} \checkmark$	-> M1	
	$= \frac{1}{2}$ Together P and Q take 2 hours	-> A1	
	(b) Fraction of work done by P and Q in 40 minutes $= \frac{2}{3} \times \frac{1}{2}$ $= \frac{1}{3}$ Balance = $1 - \frac{1}{3} = \frac{2}{3}$	→ B1	
	Tractor Q alone to do $\frac{2}{3}$ of work $= \frac{2}{3} \div \frac{3}{10} = \frac{2}{3} \times \frac{10}{3}$ $= \frac{20}{9} = 2\frac{2}{9}$ hours	-> M1	
	Total time = $2\frac{2}{9} + \frac{2}{3}$, $= 2\frac{8}{9} \text{ hours}$	M1	Allw 2m 53_
	2 hrs 53 min 20 see (c) In I h both P and Q do $\frac{1}{2}$ of the work Fraction of work done by P and Q in 1h 12 min	ogeal di sa	
	$= \frac{6}{5} \times \frac{1}{2} = \frac{3}{5}$ Balance = $1 - \frac{3}{5} = \frac{2}{5}$	-7 B1	for 2/5 1
	Payment for tractor R $= \frac{2}{5} \times 20000$	- V M1	
	= Ksh 8 000	Al	
		10	

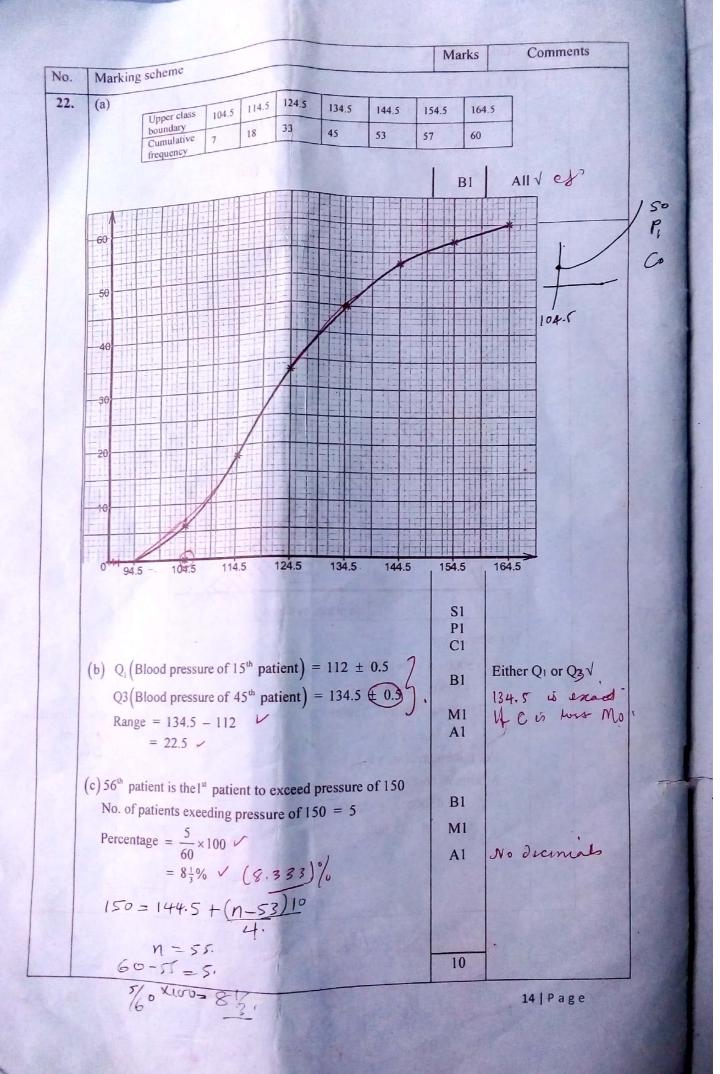

		Marks	Comments
No.	Marking scheme (a)(i) Moraa's monthly taxable income = 40 000 + 11 090 + 7 000		
	(a)(i) Moraa's monthly taxta = 40 000 + 11 090 + 7 000	BT BI	
18.	=40000 + 1	79	
	= 40.00 $= ksh 58.090$		
	(ii) 10		
	(ii) $Tax in 1st slab = \frac{10}{100} \times 11180 = 1118$	2 241	
	Tax in 2^{nd} slab = $\frac{15}{100} \times 10534 = 1580.1$	M1	
	Tax in 2^{nd} slab = $\frac{100}{100} \times 10034 = 1380.1$		
		D. Holling	
	20 10534 - 2106 8		
	Tax in 3 rd slab = $\frac{20}{100} \times 10534 = 2106.8$		
	Tax in 4 th slab = $\frac{25}{100} \times 10534 = 2633.5$	+PM1	
	Tax in 4^{m} slab $\frac{1}{100}$		
		- sumul	
	Tax in 5 th slab = $\frac{30}{100} \times 15308 = 4592.4$	→ M1	
	Tax In 5 Stab = 100	TYMI	
	Total income tax		
	= 1118 + 1580.1 + 2106.8 + 2633.5 + 4592.4		
	= 12 030.8	-7 A1'	
		T NOT LES	
((b) Relief = 12 030.80 - 10 750.8		
	= Ksh 1 280	P B1	
(c)(i) Tax in proposed 1st band	1 600 4	al SH Control of the
(
	$= 11180 \times 1.5 \times \frac{10}{100}$	I IUROU.	
	= ksh 1677 \(\sqrt{100} \)	1	
	= ksh 1677 (ii) Amount in last band	7 ⁷ B1	150
	() - 2 mount in last band	la son	150 X1/180 = 16770'
	$= 58090 - (16770 + 10534 \times 3) \vee$	P M1	100
	= 0710	purm.	16770-11180=539=
	$Tax = \frac{30}{100} \times 9718$	1000	15308-5590
		• M1	= 9718.
	= 2915.40		18
		A1	
		10	

			Marks	Comments
No.	Marking scheme			THE ALL PLANS
19.	(a)(i) Price of a pen = $\frac{180}{2x-1}$		В1	
	(ii) Price of a pencil = $\frac{200}{3x+1}$		В1	
	(b) $\frac{180}{2x-1} - \frac{200}{3x+1} = 4$		M1	or equivae
	$\frac{180(3x+1)-200(2x-1)(3x-1)}{180(3x+1)-200(2x-1)} = 0$			
	(2x-1)(3x+1) = 45(3x+1)	-50(2x-1)		
	$24x^{2} - 140$ $6x^{2} - x - 1 = 35x + 95$ $24x^{2} - 140(-384 = 0)$		₩11	furnation of
	$6x^2 - 36x - 96 = 0$	NEED OFFICE AND A	Town	great .
	$x^2 - 6x - 16 = 0$	Cadhired F	E	1. what Lack
	(x+2)(x-8)=0 , -	P	M1	Complete fael
	x = -2 or x = 8 $x = 8$		7 A1	gelvs'
		Eule - Clark		
	(c) New price of a pen = $\frac{125}{100} \times \left(\frac{180}{16-1}\right)$	site Clast 01 =		15m-8n=0
	= Ksh 15	7	В1	m +n= 46
	Price of pencil = $\frac{200}{25}$ = Ksh 8		B1	
	Let number of pens be p	to Paro in pantie 3 h 51	inii kase	
	$\therefore 15p = 8(46 - p) \cdot \cdot \cdot \cdot$		M1	- (
	$15p + 8p = 8 \times 46$			
	$\approx 23p = 8 \times 46$			
	$p = \frac{8 \times 46}{23} = 16$		A1	
			10	
			10	

11 | Page

For more visit : eazyarabic.com

No. Marking scheme 20. (a) (i) Longitude difference between A and B $= 15^{\circ} + 75^{\circ} = 90^{\circ}$ $= 15^{\circ} + 75^{\circ} = 90^{\circ}$ $= \frac{90}{360} \times 2 \times \frac{22}{7} \times 6370 \cos x = 5005$ $\cos x = \frac{5005 \times 7 \times 360}{90 \times 2 \times 22 \times 6370} = 0.5000$ $x = 60^{\circ}$ $B(60^{\circ}N, 75^{\circ}W)$	
$\frac{90}{360} \times 2 \times \frac{22}{7} \times 6370 \cos x = 5005$ $\frac{90}{360} \times 2 \times \frac{22}{7} \times 6370 \cos x = 5005$ $\cos x = \frac{5005 \times 7 \times 360}{90 \times 2 \times 22 \times 6370} = 0.5000$ $x = 60^{\circ}$ $B(60^{\circ}N, 75^{\circ}W)$	
$\frac{90}{360} \times 2 \times \frac{22}{7} \times 6370 \cos x = 5005$ $\frac{90}{360} \times 2 \times \frac{22}{7} \times 6370 \cos x = 5005$ $\cos x = \frac{5005 \times 7 \times 360}{90 \times 2 \times 22 \times 6370} = 0.5000$ $x = 60^{\circ}$ $B(60^{\circ}N, 75^{\circ}W)$	P
$\frac{90}{360} \times 2 \times \frac{22}{7} \times 6370 \cos x = 5005$ $\cos x = \frac{5005 \times 7 \times 360}{90 \times 2 \times 22 \times 6370} = 0.5000$ $x = 60^{\circ}$ $B(60^{\circ}N, 75^{\circ}W)$	
$\cos x = \frac{5005 \times 7 \times 360}{90 \times 2 \times 22 \times 6370} = 0.5000$ $x = 60^{\circ}$ $B(60^{\circ}N, 75^{\circ}W)$	
$\cos x = \frac{5005 \times 7 \times 360}{90 \times 2 \times 22 \times 6370} = 0.5000$ $x = 60^{\circ}$ $B(60^{\circ}N, 75^{\circ}W)$	
$x = 60^{\circ}$ B(60°N, 75°W)	
$x = 60^{\circ}$ B(60°N, 75°W) PAI (ii) Distance between B and $C = 910 \times 3\frac{2}{3} = 3336\frac{2}{3}$ MI $\frac{\theta}{360} \times 2 \times \frac{22}{7} \times 6370 = 3336\frac{2}{3}$ MI $\theta = \frac{3336\frac{2}{3} \times 360 \times 7}{2 \times 22 \times 6370} = 30^{\circ}$ C(30°N, 75°W) PAI (b) Time for entire journey + stop over $= \frac{5005}{910} + 1h \ 30 \ min + 3h \ 40 \ min$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6h$ MI	
B(60°N, 75°W)	
(ii) Distance between B and $C = 910 \times 3\frac{2}{3} = 3336\frac{2}{3}$ M1 $\frac{\theta}{360} \times 2 \times \frac{22}{7} \times 6370 = 3336\frac{2}{3}$ M1 $\theta = \frac{3336\frac{2}{3} \times 360 \times 7}{2 \times 22 \times 6370} = 30^{\circ}$ $C(30^{\circ}N, 75^{\circ}W) = -2$ A1 (b) Time for entire journey + stop over $= \frac{5005}{910} + 1h \ 30 \ \text{min} + 3h \ 40 \ \text{min}$ $= 10 \ h \ 40 \ \text{min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 \ h$ M1	
$\frac{\theta}{360} \times 2 \times \frac{22}{7} \times 6370 = 3336\frac{2}{3}$ $\theta = \frac{3336\frac{2}{3} \times 360 \times 7}{2 \times 22 \times 6370} = 30^{\circ}$ $C(30^{\circ}N, 75^{\circ}W) - 60^{\circ}$ A1 $(b) \text{ Time for entire journey + stop over}$ $= \frac{5005}{910} + 1\text{h } 30 \text{ min + 3h } 40 \text{ min } - \text{I}$ $= 10 \text{ h } 40 \text{ min}$ Time difference due to longitude difference} $= \frac{90 \times 4}{60} = 6 \text{ h}$ M1	
$\frac{\theta}{360} \times 2 \times \frac{22}{7} \times 6370 = 3336\frac{2}{3}$ $\theta = \frac{3336\frac{2}{3} \times 360 \times 7}{2 \times 22 \times 6370} = 30^{\circ}$ $C(30^{\circ}N, 75^{\circ}W) - 60^{\circ}$ A1 $(b) \text{ Time for entire journey + stop over}$ $= \frac{5005}{910} + 1\text{h } 30 \text{ min + 3h } 40 \text{ min } - \text{I}$ $= 10 \text{ h } 40 \text{ min}$ Time difference due to longitude difference} $= \frac{90 \times 4}{60} = 6 \text{ h}$ M1	
$\theta = \frac{3336\frac{2}{3} \times 360 \times 7}{2 \times 22 \times 6370} = 30^{\circ}$ $C(30^{\circ}N, 75^{\circ}W) = 60^{\circ} = 60^{\circ}$ (b) Time for entire journey + stop over $= \frac{5005}{910} + 1h 30 \text{ min} + 3h 40 \text{ min} = 70$ $= 10 h 40 \text{ min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6h$ M1	
$\theta = \frac{3336\frac{2}{3} \times 360 \times 7}{2 \times 22 \times 6370} = 30^{\circ}$ $C(30^{\circ}N, 75^{\circ}W) - C = -20^{\circ}$ (b) Time for entire journey + stop over $= \frac{5005}{910} + 1h 30 \text{ min} + 3h 40 \text{ min} - D M1$ $= 10 h 40 \text{ min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 h M1$	
$C(30^{\circ}N, 75^{\circ}W)$ (b) Time for entire journey + stop over $= \frac{5005}{910} + 1h \ 30 \ \text{min} + 3h \ 40 \ \text{min} - D$ $= 10 \ h \ 40 \ \text{min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 \ h$ M1 M1 M1	
(b) Time for entire journey + stop over $= \frac{5005}{910} + 1h \ 30 \ \text{min} + 3h \ 40 \ \text{min} - D$ $= 10 \ h \ 40 \ \text{min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 \ h$ M1	
(b) Time for entire journey + stop over $= \frac{5005}{910} + 1h \ 30 \ \text{min} + 3h \ 40 \ \text{min} - D$ $= 10 \ h \ 40 \ \text{min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 \ h$ M1	
$= \frac{5005}{910} + 1h \ 30 \ \text{min} + 3h \ 40 \ \text{min} - D$ $= 10 \ h \ 40 \ \text{min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 \ h$ M1 M1 M1	
$= 10 \text{ h } 40 \text{ min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 \text{ h}$ M1	
$= 10 \text{ h } 40 \text{ min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 \text{ h}$ M1	w
$= 10 \text{ h } 40 \text{ min}$ Time difference due to longitude difference $= \frac{90 \times 4}{60} = 6 \text{ h}$ M1	
$=\frac{90\times4}{60}=6h$ M1	
$=\frac{90\times4}{60}=6h$ M1	
Local time at C when aircraft reached	
0720 0600 -	
$0120 \\ 1040 \\ +$ — M1	
1040)	
1200h	
10	



Allernatively Chropectini

Must me three points with me
of them belief 5, 4)

x = 5 and y=4,

13 | Page

		Marks	Comments
No.	Marking scheme	7 BI	
23.	(a)(i) $\angle EAD = 40^{\circ} (\angle in alt. segment)$		
	$\angle ADE = 180 - (40 + 45) = 95 \text{ (sum of angle in } \Delta)$		
	$\angle BD \mathcal{C} = 40^{\circ} $ (alternate angle)	M1	
	$\angle ADB = 180 - (95 + 40)$		
	= 45°	Al	
	(ii) $\angle BAD = 180^{\circ} - (45^{\circ} + 40^{\circ}) = 95^{\circ}$	р В1	for 80° or 96
	$\angle BCD = 180^{\circ} - 95^{\circ} = 85^{\circ}$	Bi	0
	$\angle BOC = 2x40^{\circ}$		
	= 80°		
	$\angle OCB = \left(180^{\circ} - 80^{\circ}\right) \times \frac{1}{2} = 50^{\circ}$	B1m1	(180-110)
	∠OCD = 85° - 50° = 35° —	BLA	
	(b)(i) EA = $\sqrt{3.5(3.5+4.9)}$ = $\sqrt{3.5 \times 8.4}$	M1	
	= 5.4 cm	Al	
	(ii) $2r = \frac{4.9}{\sin 55^\circ}$	M1	
	r = 2.991		
	r = 3.0 cm	A1	
			Follow thro'
		10	

		1	
No.	Marking scheme	Marks	Comments
24.	Marking scheme (a)(i) Total No. of students = $60 + 56 + 44 + 40 = 200$	7B1	Can be employed in the search
	$P(Student in F4) = \frac{40}{200} = \frac{1}{5}$	B1	in bto seand
	(ii) P (Student wears glasses)		
	$= \frac{\frac{10}{100} \times 60 + \frac{12.5}{100} \times 56 + \frac{25}{100} \times 44 + \frac{17.5}{100} \times 40}{200}$	M1	
	$=\frac{6+7+11+7}{200}$		
	$=\frac{31}{200}$	7 A1	0.155
	(b)(i) $P(Either F_1F_4 \text{ or } F_4F_1)$		
	$= \frac{60}{200} \times \frac{40}{199} + \frac{40}{200} \times \frac{60}{199}$	M1M1	Lary one news
	$=\frac{12}{199}+\frac{12}{199}$, , , , , , , , , , , , , , , , , , ,
	$\frac{4800}{39800} = \frac{24}{199}$	Al	48 00
	(ii) P(Either F ₁ GF ₄ G or F ₄ GF ₁ G)		ne i
	$= \frac{60}{200} \times \frac{10}{100} \times \frac{40}{199} \times \frac{17.5}{100} + \frac{40}{200} \times \frac{17.5}{100} \times \frac{60}{199} \times \frac{10}{100}$	MIMI	Any of those probabilities
	$=\frac{21}{19900}+\frac{21}{19900}$		probabilities
8	$\frac{24}{4800} = 42 = \frac{21}{9950}$	Al	43
136	1000 1800		3 980 0°
		10	

LAST PRINTED PAGE