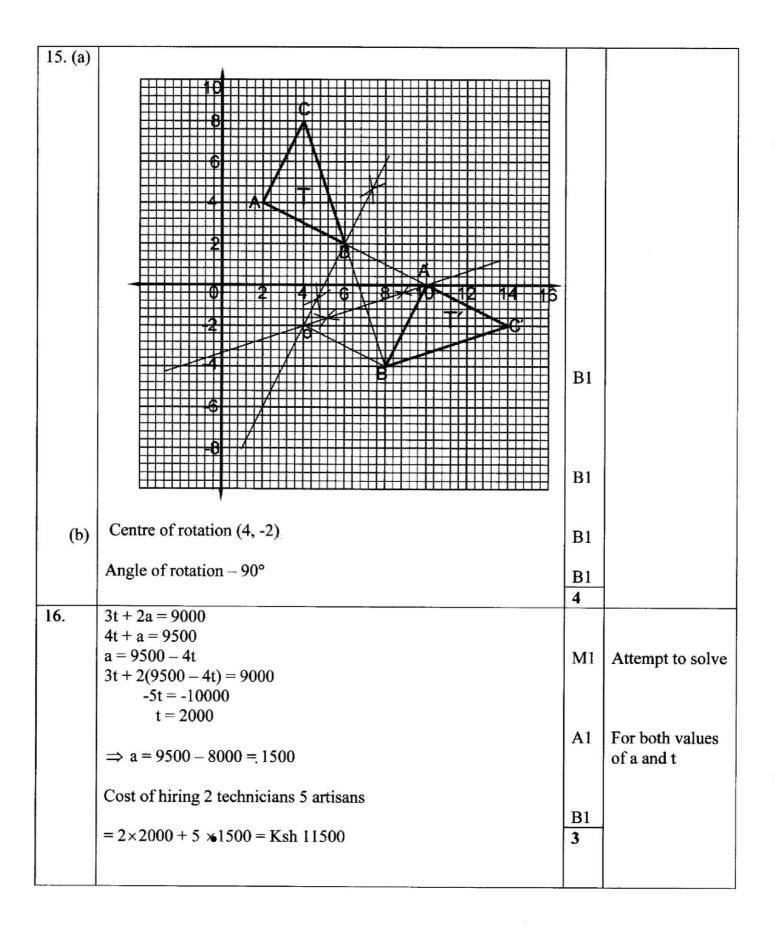
4.3 MATHEMATICS ALTERNATIVE A (121)

4.3.1 Mathematics Alternative A Paper 1 (121/1)

No.	Marking Scheme	Marks	Comments
1.	$\sqrt{\frac{0.0961}{4.0836 - 3.7112}} = \sqrt{0.2581}$	M1	
	= 0.5080	A1	
	Standard form = 5.080×10^{-1}	B1 3	
2.	$189 = 3 \times 3 \times 3 \times 7$	B1	
	$= 3^3 \times 7$		
	$\therefore p^3 \times q = 3^3 \times 7$	B1	
	p = 3, q = 7	B1 3	
3.	Let the number of kg of maize be m and number of kg of beans be b		
	Buying price = 20m + 60b	B1	
	Selling price = 48(m+b)		
	$\frac{60}{100} = \frac{48(m+b) - (20m+60b)}{20m+60b}$	M1	or equivalent
	$0.6 = \frac{28m - 12b}{20m + 60b}$		
	$\Rightarrow 12m + 36b = 28m - 12b$ $16m = 48b$	M1	
	$\frac{m}{b} = \frac{3}{1}$		
	∴ Ratio m:b = 3:1	A1 4	


4.	$\angle BAC = 180^{\circ} - (80^{\circ} + 30^{\circ}) = 70^{\circ}$		8
	AC = 12		
	$\frac{1}{\sin 80^{\circ}} = \frac{1}{\sin 70^{\circ}}$	M 1	or equivalent
	= 12.58 cm		
	- 12.56 CM		9
	Area of $\triangle ABC = \frac{1}{2} \times 12 \times 12.58 \sin 30^{\circ}$	M1	
	$= 6 \times 12.58 \times 0.5$		
	$= 37.74 \text{ cm}^2$	A1	
	N. G. de G. berrand	3	
5.	No. of sides of a hexagon = 6		
	Each exterior angle, $x = \frac{360}{6}$		
	= 60°	В1	
	Size of each exterior angle		
	= 180° - 60°		
	= 120°	B1	
		2	
6.	No. Log		
	$(1.654)^2 0.2185 \times 2$	M1	All logs correct
	0.4370		
	45.73 1.6602 -	M1	Correct squaring and multiplication
	0.56 1.7482 or (-0.2518)		
	$\bar{1.0286}$ or $(-0.9714) \times \frac{1}{3}$	M1	Correct cube root and division
	<u>1.6762</u> or − 0 .3238		
	= 0.4745		
		A1 4	

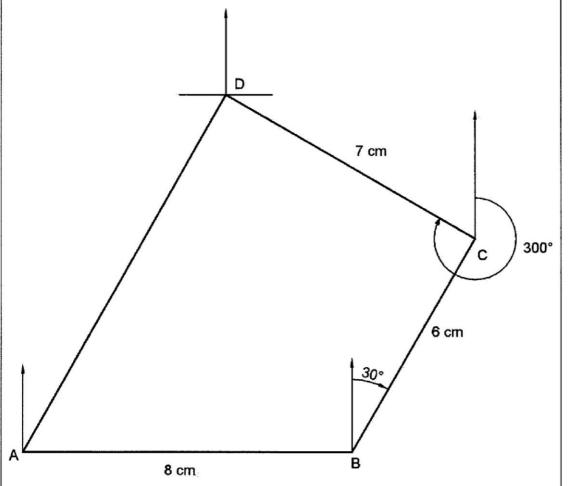
7.	(a) $\frac{2x}{3} + \frac{5y}{7} = 1$		
	14x + 15y = 21		
	$y = \frac{-14}{15}x + \frac{21}{15}$		*
	gradient of $L = \frac{15}{14}$	B1	
	(b) Equation of L		
	$\frac{y-11}{x-4} = \frac{15}{14}$	M1	
	$y = \frac{15}{14}x + \frac{47}{7}$	A1 3	
8.	$\pi^c = 180^{\circ}$		
	$\frac{2\pi^c}{9} = \frac{180 \times \frac{2\pi}{9}}{\pi}$ $= 40^\circ$	M1	
	= 40°	A1 2	
9.	$Area = \frac{1}{2} \times b \times h$		
	Let h be the other shorter side		
	$346.8 = \frac{1}{2} \times 17 \times h$		
	h = 40.8	B1	
	longest side = $\sqrt{17^2 + 40.8^2}$	M1	
	$=\sqrt{1953.84}$		
	= 44.2m	A 1	
		3	

10.	$L_1: y-x \le 1$	B1	or equivalent
	$L_2: x < 4$	В1	
	$L_3: x+2y \ge 6$	B1	or equivalent
		3	
11.	$\frac{840}{x} - \frac{840}{x+1} = 4$	M1	
	$4x^2 + 4x - 840 = 0$		
	$x^2 + x - 210 = 0$		
	(x+15)(x-14) = 0	M1	
	x = 14	A 1	
	No of seedling planted by		
	Murimi per row = $\frac{840}{14}$		
	= 60	B1 4	
12.	£500 000 to Ksh = $50\ 000 \times 130.10$		
	= Ksh 6 505 000	В1	
	Balance after expenditure		,
	$= \frac{20}{100} \times 6\ 505\ 000$		
	= Ksh 1 301 000	В1	
	Amount in Rands	435.55	
	$=\frac{1301000}{9.58}$		
	= R 153 804 •	B1	
		3	

For more visit: eazyarabic.com

13.	Mid ordinates are		
	x -3 -1 1 3 5 7 y 10 2 2 10 26 50	B1	e e
	Area = $2(10 + 2 + 2 + 10 + 26 + 50)$	M 1	
	= 200	A1 3	
14.	(4) (r) (-2) (10)		
1 "	$3 \binom{4}{3} - 2 \binom{x}{y} + 4 \binom{-2}{-5} = \binom{10}{-19}$	M1	
	$ \begin{pmatrix} 4-2x \\ -11-2y \end{pmatrix} = \begin{pmatrix} 10 \\ -19 \end{pmatrix} $		
	4 - 2x = 10	Ml	Attempt to solve for x or y
	-2x = 6		91
	x = -3		
	-11-2y = -19		
	-2y = -8		*
	y = 4		
	$b = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$	A1	
	(y) (4)	3	

12			
17.	$(a) \\ 2y - 3x = 6$		
=	3y + x = 20		
	2y - 3x = 6	M1	Attempt to solve
	$\frac{9y+3x=60}{11}$	1	Titlempt to solve
	$ \begin{vmatrix} 11y = 60 \\ y = 6 \end{vmatrix} $		
	$\begin{array}{c} x = 20 - 18 \\ = 2 \end{array}$	A1	for $x = 2$ $y = 6$
			lor x 2 y 0
	Coordinates of A are (2, 6)	B1	
	(b) $L_2: 3y = -x + 20$		
	$y = -\frac{1}{3}x + 20$	B1	
	Conditions of a sum of the last		
	Gradient of perpendicular = 3	M1	
	$\frac{y-6}{x-2} = 3$		
	x-2		
	y = 3x - 6 + 6		
	y = 3x	A1	
	(c) Gradient of L_4 = gradient of L_1		
	$=\frac{3}{2}$		
	v-3 3	3.61	
	$\frac{y-3}{x+1} = \frac{3}{2}$	M1	
	2y-6=3x+3		
	2y - 3x = 9	A 1	
	When $x = 0$ $y = 4.5$	В1	
	When $y = 0$ $x = -3$	В1	
		10	


(a)										
Mass 35-39 Kg	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	В1	correct classes
Freq. (f) 2	4	8	9	11	7	5	3	1	B1	correct frequencies
(b) (i) Mean = $2 \times 37 + 4 \times 11 \times 57 + 7 \times 1 \times 77$									M1	correct midpoints
$=\frac{2775}{50}$		50							M1	
$= 55.5 \mathrm{k}$	g								A1	~
(ii) C.f's 2,6,14	4,23,34	,41,46	,49,50						B1	
Median = :	54.5+- 1	$\frac{2}{11} \times 5$							M1	
= 55.4 kg			.0,						A1	
(c)										
12 10 (£) 8 8 6 4 2 0 34.5 39.5	44.5	19.5 5	54.5 5 Mass	9.5 64 Kg	1.5 69	.5 74.	5 79.5	5	B2	
				· · ·					10	1

19.	(a) Volume of Solid S	
	Volume of conical part	
	$= \frac{1}{3}\pi \times (0.9)^2 \times 1.5$	M1
	$= 1.3 \text{m}^2$	
	Volume of cylindrical part	
	$= \pi \times (0.9)^2 \times 3$	M1
	=7.6m ³	
	Volume of pillar = $1.3 + 7.6$	M1
	$=8.9\mathrm{m}^3$	Al
	(b) S.A. of Solid S	
	Slant length of conical part	
	$=\sqrt{(1.5)^2+(0.9)^2}=1.7$	B1
	S.A. of conical part	
	$= \pi \times (0.9) \times 1.7$	M1
	$=4.8\mathrm{m}^2$	
	S.A. of cylindrical part	
	$=2\pi\times0.9\times3+\pi\times(0.9)^2$	M1
	$=19.5\mathrm{m}^2$	
	S.A. of Solid S = $19.5\text{m}^2 + 4.8\text{m}^2$	
	$= 24.3 \text{m}^2$	A1
	(c) $(1.6)^2 \times L = 8.9 \text{m}^3$	M1
	h = 3.5m	A1 10

For more visit: eazyarabic.com

20. (a)	Length DC = $\sqrt{3^2 + 5^2}$	M1	
	= 5.8cm	A 1	
(b)	$\tan^{-1}\frac{5}{3} = 59.0^{\circ}$	M1 A1	or equivalent
(c)	Size of angle ACB		
	$11^2 = 5^2 + 8^2 - 2 \times 5 \times 8 \ Cos \ C$	M1	
	$\cos C = \frac{5^2 + 8^2 - 11^2}{2 \times 5 \times 8}$		
	= -0.4		
	$\angle ACB = Cos^{-1}(-0.4)$	M1	
	$\angle ACB = 113.6^{\circ}$	A1	
(d)	Area of ABCD = Area of ACD + Area of ABC		
	$= \frac{1}{2} \times 3 \times 5 + \frac{1}{2} \times 5 \times 8 \sin 113.6$	M1 M1	
	$=25.8\mathrm{cm}^2$	A1	
		10	

(a) Location of B

Location of C

Location of D

Complete quadrilateral ABCD

(b) Bearing of A from D = 180 + 30

$$=210^{\circ}$$

(c) Distance BD = $9.2 \text{ cm} \times 1 \text{ km}$

 $= 9.2 \text{ km} \pm 0.1$

(d) Perimeter:

 $AD = 10.0 \pm 0.1 \text{ km}$

B1

B1

B1

B1

B1

M1

A1

	Perimeter = 10 + 8 + 6 + 7	M1	7
	= 31 km	A1	
		10	
22.	(a) $\binom{3}{x+1} \binom{x}{2} \binom{1}{3} \binom{2}{0} = \binom{3+3x}{x+7} \binom{6}{2x+2}$	M1 A1	
	$\begin{pmatrix} 3+3x & 6 \\ x+7 & 2x+2 \end{pmatrix} = 0$		
	$\Rightarrow (3+3x)(2x+2)-6(x+7)=0$	M1	
	$6x + 6x^2 + 6x - 6x - 36 = 0$		
	$6x^2 + 6x - 36 = 0$		
	$x^2 + x - 6 = 0$		
	(x+3)(x-2)=0	A1	
	x = 2 or -3		
	(b) (i) $3x + 5y = 165$ $2x + 4y = 120$	В1	,
	(ii)		
	$Let A = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix}$		
	$A^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -5 \\ -2 & 3 \end{pmatrix}$	В1	
	$\frac{1}{2} \begin{pmatrix} 4 & -5 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 4 & -5 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 165 \\ 120 \end{pmatrix}$	M1	
	$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \end{pmatrix} $		
	$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \end{pmatrix}$		

	Cost of an exercise book = Ksh. 30	
	Cost of a pen = Ksh. 15	
	(iii) $2 \times 36 \times 30 + 36 \times 15$	A1
	= Ksh 2700	M1
	- KSn 2700	
		10
23.	(a) (i) Original price = $\frac{16200}{x}$	B1
	(ii) Price after discount = $\frac{16200}{x+3}$	B1
	(b) (i) $\frac{16200}{x} - 60 = \frac{16200}{x+3}$	M1
	16200-60x 16200	
	$\frac{16200 - 60x}{x} = \frac{16200}{x + 3}$ $(16200 - 60x)(x + 3) = 16200x$ $60x^2 + 180x - 48600 = 0$ $x^2 + 3x - 810 = 0$	M1
	(x+30)(x-27)=0	M1
	x = 27	A 1
	(ii) $\frac{16200}{27+3}$	M1
	= Ksh 540	A1
	(iii) $\frac{16200}{27} \times \frac{15}{100}$	M1
	= Ksh 90	A1 10

24.	(a) (i) When $x = 2$	T	I
	$y = 2(2)^3 - \frac{9}{2}(2)^2 - 15(2) + 3$	M1	
	= -29	A1	
	(ii) $\frac{dy}{dx} = 6x^2 - 9x - 15$		
	$\frac{dx}{dx} = 0x - 3x - 13$	B1	
	at $x=2$		
	$\frac{dy}{dx} = -9$	B1	
	dx		
	Equation of tangent;		
	$\frac{y+29}{x-2} = -9$	M1	
	x-2		
	y = -9x + 18 - 29		
	y = -9x - 11	A 1	
	(b) $\frac{dy}{dx} = 6x^2 - 9x - 15$		
	At turning point		
	$6x^2 - 9x - 15 = 0$	M1	Equating to zero
	$6x^2 + 6x - 15x - 15 = 0$	IVII	Equating to zero
	$\left(6x-15\right)\left(x+1\right)=0$		
	x = -1 or 2.5	A1	
	at $x = -1$; $y = 11.5$		
	turning point = $(-1, 11.5)$	B1	
	at $x = 2.5$, $y = -31\frac{3}{8}$		
	turning point = $\left(2.5, -31\frac{3}{8}\right)$	B1 10	