THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

233/2

— CHEMISTRY — (THEORY) Nov. 2019 – 2 hours

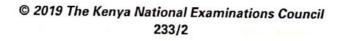
Paper 2

Contract of	A
1	1
THE PARTY	1
THE PERSON	5
MITHAN	

Name	Index Number
Candidate's Signature	Data

717

Instructions to candidates


- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided.
- (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.
- (e) All working must be clearly shown where necessary.
- (f) This paper consists of 15 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	12	- Samuel
2	10	1/
3	12	words E.
0142 3	12	MCDN 0
5	12	pools the
6	11	
7	11	Tall Land
Total Score	80	

1.	(a)	Alkanes are said to be saturated hydrocarbon	S.
	(-)	The state of the s	•

	(i)	What is meant by saturated hydrocarbons.	(1 mark)
	(ii)	Draw the structure of the third member of the alkane homologous series name it.	and (2 marks)
			, 11°3 ₁
b)	When	the alkane, hexane, is heated to high temperature, one of the products is	ethene.
	(i)	Write the equation for the reaction.	(1 mark)
	(ii)	Name the process described in (b).	(1 mark)

(c) Study the flow chart in Figure 1 and answer the questions that follow.

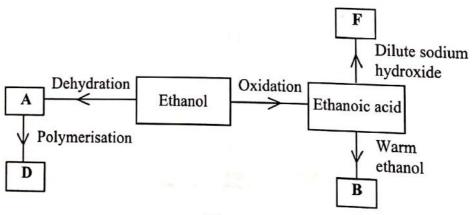


Figure 1

For more visit : eazyarabic.com

3

	(i)	Identify A.	(1 mark)
	(ii)	State one physical property of B.	(1 mark)
	(iii)	Draw the structure of D .	(1 mark)
	(iv)	Give a reason why D pollutes the environment.	(1 mark)
	(v)	Write an equation for the formation of F.	
(d)	Descr	ribe an experiment which can be used to distinguish butene from butanol.	(2 marks)

Kenya Certificate of Secondary Education, 2019 233/2

2.	(a)	Zinc	occurs mainly as zinc blende. Name one other ore from which zinc can be cted.	(1 mark)
	(b)	The fi	low chart in Figure 2 shows the various stages in the extraction of zinc med it and answer the questions that follow.	tal.
2 L	Ro	asting	ZnO Blast Condenser Distiller Furnace Pure Zinc	
		(i)	Figure 2 Write an equation for the reaction which occurs in the roasting chamber.	(1 mark)
		(ii)	Describe the process that takes place in the blast furnace.	
		(11)		
0145				
250				
)	(iii)	Explain why molten lead is added to the condenser.	(1 mark)

Kenya Certificate of Secondary Education, 2019 233/2

	(iv)	State two uses of zinc. (1 mark)	
	(v)	Give one reason why the extraction of zinc causes pollution to the environment. (1 mark)	
(c)	Expla	nin the observations made when zinc metal is added to hot sodium hydroxide. (2 marks)	702
		T _{E-MC}	

0145

Turn over

3. Figure 3 is a flow chart that shows the process that occurs in the manufacture of nitric(V) acid.

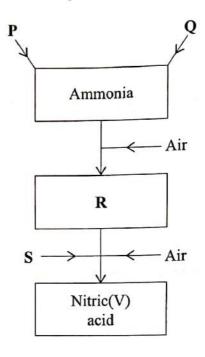


Figure 3

Name substance P, Q, R and S.

	P	
		(1 mark)
	Q	
	_	(1 mark)
	R	(1 mark)
	S	
		(1 mark)
b)	To ob The p	stain substance R, ammonia is heated at 900 °C in the presence of air and a catalyst.
	(i)	Name the catalyst for the reaction. (1 mark)
	(ii)	Write the equations for the two reactions described in (b). (2 marks)

(a)

7

	(iii)	Other than nitric(V) acid, name another product that is formed.	l mark)
(c)	When	ammonia is reacted with nitric(V) acid, it produces a nitrogenous fertiliser.	
	(i)	Explain why fertilisers play a major role in food production. (2	marks)
			. <mark></mark>
	(ii)	State two problems associated with the use of nitrogenous fertilisers. (2	marks)

(a)	Expl	lain the following observations:	acium
	(i)	The colour of aqueous copper(II) sulphate fades when a piece of magne- metal is dropped into the solution.	(2 marks)
	(ii)	A piece of iron bar is coated with a brown substance when left in the op	oen on a (2 marks)
		rainy day.	
(b)	A sar	mple of water is suspected to contain aluminium ions (AI³+). Describe a largeriment that can be carried out to show that AI³+ ions are present in the water	aboratory er sample. (3 marks)
			······

4.

In an experiment to determine the number of moles of water of crystallisation of a

(i)	Explain how a constant mass was obtained.	(2 marks)
	•••••••••••••••••••••••••••••••••••••••	••••••
(ii)	During the experiment, the mass of the residue was found to be 2.2 Determine the number of moles of water of crystallisation in the co (Na = 23.0 ; O = 16.0 ; S = 32.0 ; H = 1.0)	
(ii)	Determine the number of moles of water of crystallisation in the co	mpound.
(ii)	Determine the number of moles of water of crystallisation in the co (Na = 23.0; O = 16.0; S = 32.0; H = 1.0)	mpound. (3 marks)
(ii)	Determine the number of moles of water of crystallisation in the co (Na = 23.0 ; O = 16.0 ; S = 32.0 ; H = 1.0)	mpound. (3 marks)

(c)

5.	(a)	What is meant by molar heat of neutralisation?	(1 mark)

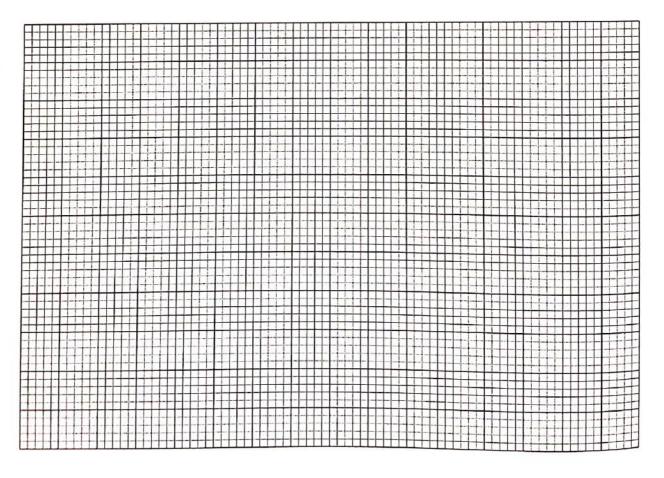

(b) In an experiment to determine the molar heat of neutralisation, 50 cm³ of 1M hydrochloric acid was neutralised by adding 10 cm³ portions of dilute sodium hydroxide. During the experiment, the data in **Table 1** was obtained.

Table 1

Volume of Sodium hydroxide (cm³)	0	10 20 3		30	40	50	60	
Temperature of mixture (°C)	25.0	27.0	29.0	31.0	31.0	30.0	29.0	

(i) Write the equation for the reaction in this experiment. (1 mark)

(ii) On the grid provided, plot a graph of temperature (Y-axis) against volume of sodium hydroxide (X-axis) added. (3 marks)

(iii)	Determine from the graph the:	
	 volume of sodium hydroxide which completely neutralises 50 cm hydrochloric acid. 	m ³ of 1M (1 mark)
	II. change in temperature, ΔT , when complete neutralisation occurr	ed. (1 mark)
(iv)	Calculate:	
	I. the heat change, ΔH when complete neutralisation occurred. (Specific heat capacity = 4.2 Jg ⁻¹ K ⁻¹ , density of solution 1.0 gcr	n ⁻³) (2 marks)
	II. molar heat of neutralisation of hydrochloric acid with sodium hy	/droxide. (1 mark)
(v)	How would the value of molar heat differ if 50 cm ³ of 1M ethanoic acid instead of 1M hydrochloric acid? Give a reason.	d was used (2 marks)

6.	(a)	What	is meant by standard electrode potential of an element?	(1 mark)
		* * * * * * * * * * * * * * * * * * * *	he standard electrode potentials given below to answer the questions	that follow.
	(b)	Daga		E^{θ} (V) + 1.49
			$(aq) + e^- \rightarrow M^{2+}(aq)$	+0.77
		N ²⁺ (a	$q) + 2e^- \rightarrow N(s)$	+0.34
		P2+(ac	$q) + 2e^- \rightarrow P(s)$	-0.23
		Q,(g)	$1+2e^- \rightarrow 2Q^-(g)$	+2.87
		$R_2(g)$	$)+2e^{-}\rightarrow 2R^{-}(g)$	+1.36
		(i)	State whether acidified MnO ₄ ⁻ can oxidise M ²⁺ . Give a reason.	(2 marks)
				······
		(ii)	Select two half-cells which when combined will give the highest e.	
		(iii)	Write the cell representation for the cell formed in b (ii).	(1 mark)
		(iv)	Calculate the E ⁰ value for the cell formed in b (iii).	(2 marks)
919	252		Kenya Certificate of Secondary Education, 2019	

(c)	through a solution of the metal sulphate for 12 minutes. Determine mass of the metal. (1 Faraday = $96,500 \text{ C mol}^{-1}$)	t of 6A was passed e the relative atomic (3 marks)
ŧ		
(d)	State two applications of electrolysis.	(1 mark)
	· · · · · · · · · · · · · · · · · · ·	

5410

Kenya Certificate of Secondary Education, 2019 233/2

Turn over

7.	(a)	and the state of t	(1 mark
			••••••
			•••••••••••
	(b)	, 1 ,	mine the
		rate of reaction between manganese(IV) oxide and hydrogen peroxide.	(3 marks
	(c)	A student placed a small amount of liquid bromine at the bottom of a sealed gas as shown in Figure 4.	s jar of air
		Air	
		Liquid bromine	
		Figure 4	
		(i) Describe what will be observed:	
		I. after two minutes	(1 mark)
		II after 30 minutes	
		II. after 30 minutes	
19252	195	Kenya Certificate of Secondary Education, 2019 233/2	

	(ii)	Use the Kinetic theory to explain the observations:	(2 marks)
		I. after 2 minutes	
		II. after 30 minutes	
(d)	Some	e plants have seeds that contain vegetable oil.	
	(i)	Describe how the oil can be obtained from the seeds.	(3 marks)
	(ii)	Explain how it could be confirmed that the liquid obtained from the seed	ls is oil. (1 mark)

THIS IS THE LAST PRINTED PAGE.

Kenya Certificate of Secondary Education, 2019 233/2