For more info visit: eazyarabic.com

THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

233/2 -

CHEMISTRY (THEORY) Nov. 2018 – 2 hours

- Paper 2

Name	Index Number
Candidate's Signature	

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer ALL the questions in the spaces provided.
- (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.
- (e) All working MUST be clearly shown where necessary.
- (f) This paper consists of 14 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	14	
2	14	
3	13	
4	11	
5	15	
6	13	
Total Score	80	

© 2018 The Kenya National Examinations Council 233/2

1. The diagram in Figure 1 shows some natural and industrial processes. Study it and answer the questions that follow.

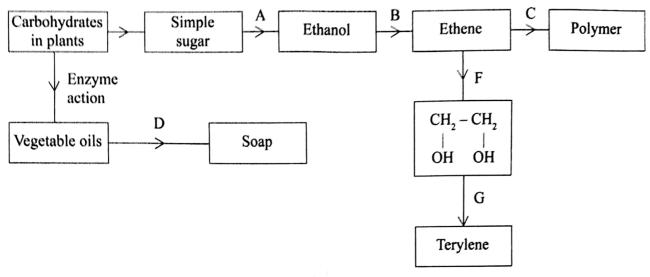


Figure 1

(a)	Ident	ify the processes labelled:	(2 marks)			
	A					
	В					
	C					
	D					
(b)	State	State the reagents and conditions required for processes B and D .				
	(i)	Process B:				
		Reagent	(1 mark)			
		Conditions	(1 mark)			
	(ii)	Process D:				
		Reagent	(1 mark)			
		Conditions	(1 mark)			

3

	(iii)	Describe how process D is carried out.	(2 marks)
			•
	(iv)	State two additives used to improve the quality of soap.	(1 mark)
(c)	State	the reagents required in steps F and G.	
	(i)	F	(1 mark)
	(ii)	G	(1 mark)
	(iii)	Draw the structure of terylene.	(1 mark)
(d)	(i)	Name the polymer formed in step C.	(1 mark)
	(ii)	State one disadvantage of the polymer formed in (d) (i).	(1 mark)
			•••••

2. Figure 2 is a section of the periodic table. Study it and answer the questions that follow. The letters do not represent the actual symbols of elements

G						
				I		V
K	L	M	V		,	
J						

Figure 2

(a)	(i)	Select elements which belong to the same chemical family.	(1 mark)
	(ii)	Write the formulae of ions for elements in the same period.	(1 mark)
(b)			/mol and
	(i)	Write equations for the 1^{st} ionisation energies for elements K and M and	l indicate (1 mark)
	(ii)	Explain the answer in (b) (i).	(1 mark)
	(iii)	Write the formula of the compound formed when L and I react.	(1 mark)
		(ii) (b) The fit 494 kJ (i)	(ii) Write the formulae of ions for elements in the same period. (b) The first ionisation energies of two elements K and M at random are 577kJ 494kJ/mol. (i) Write equations for the 1 st ionisation energies for elements K and M and their energies. (ii) Explain the answer in (b) (i).

	(iv)	Give one use o			(1 mark)	2
(c)	(i)	State another g	roup that G can be placed	in Figure 2 . Explain.	(2 marks)	ir.
	(ii)	How do the rea	activity of elements J and	K compare? Explain.	(2 marks)	
(d)	(i)		d M form chlorides. Conch chloride and state the n	nplete the following table by ature of the solutions.	writing the (2 marks)	
		Element	Formula of chloride	Nature of chloride solution	on	5
		L				
		M				
	(ii)	The chloride opoint. Explain.		easily while its oxide has a h	nigh melting (2 marks)	
					••••••	
						2

3. (a) Complete **Table 1** by indicating the observations, type of permanent or temporary change and name of new compound formed.

Table 1

Experiment	Observations	Type of Change	Name of product
(i) Heat candle wax strongly in a test tube.			
(ii) Anhydrous copper(II) sulphate is left exposed overnight			
(iii) Iron wool is soaked in tap water for two days			

(6 marks)

(b) Use the set-up in **Figure 3** to answer the questions that follow. The flask was covered with a cloth that had been soaked in ice-cold water.

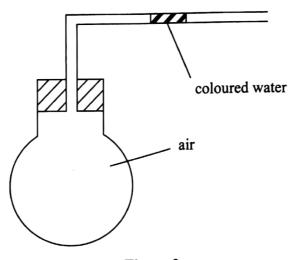


Figure 3

(i)	State the observation made on the coloured water. Explain.	(2 marks)
(ii)	Name the gas law illustrated in Figure 3.	(1 mark)
	The Good of the Floriday 2019	

(c) Use the standard electrode potentials in Table 2 to answer the questions that follow.

Table 2

(i)

Half-cell	$\mathbf{E}^{ heta}$ /Volts
Z+/Z	+0.80
V ²⁺ /V	-0.40
W+/W ₂	0.00
Y ²⁺ /Y	-2.87
U+/U	+1.90

 Write the half-cell representation for the element whose electrode poten hydrogen. 				
(ii)	Arra		(1 mark)	
(iii)	I	Select two half cells which combine to give a cell with the lea	st e.m.f. (1 mark)	
			••••••	
	II	Calculate the e.m.f of the half cells identified in (iii) I.	(1 mark)	
			••••••	
			••••••	

powo react	An experiment was carried out to prepare crystals of magnesium sulphate. Excess magnesium powder was added to 100 cm ³ of dilute sulphuric(VI) acid in a beaker and warmed until no further reaction took place. The mixture was filtered and the filtrate evaporated to saturation, then left to cool for crystals to form.					
(a)	(i)	Write an equation for the reaction.	(1 mark)			
	(ii)	Explain why excess magnesium powder was used.	(1 mark)			
	(iii)	State how completion of the reaction was determined.	(1 mark)			
	(iv)	What is meant by a saturated solution?	(1 mark)			
	(v)	Explain why the filtrate was not evaporated to dryness.	(2 mark)			

8

4.

(b)	When bleaching powder, CaOCl ₂ , is treated with dilute nitric(V) acid, chlorine gas i released. This reaction can be used to determine the chlorine content of various sample of bleaching powders and liquids.				
	(i)	Write an equation for the reaction of nitric(V) acid with bleaching powder. (1 mark)			
	(ii)	Calculate the volume of chlorine produced when $10\mathrm{g}$ of $\mathrm{CaOCl_2}$ is treated with excess nitric(V) acid. (Ca = 40.0; O = 16.0; Cl = 35.5; 1 mole of gas occupies 22.4 dm³ at s.t.p) (3 marks)			
(c)	Apart from use of chlorine gas in bleaches and water treatment, state two other chlorine gas.				
	•••••				

5. (a) The diagram in Figure 4 was used to prepare hydrogen chloride gas which was passed over heated iron powder.

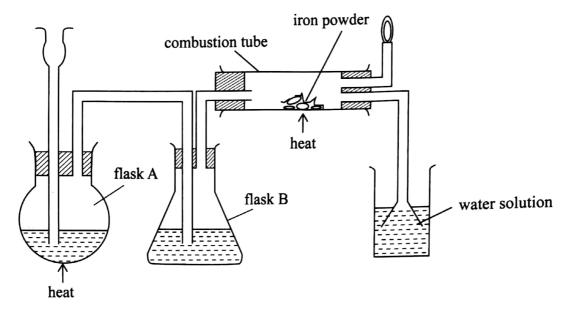


Figure 4

(1)	Give a pair of reagents that will produce hydrogen chloride gas in has	(2 marks)
(ii)	Name the substance in flask B .	(1 mark)
		•••••••
(iii)	State the observation made in the combustion tube.	(1 mark)
(iv)	Write an equation for the reaction in the combustion tube.	(1 mark)
(v)	Describe a chemical test for hydrogen chloride gas.	(1 mark)
		••••••

((i)	Identify the gas that burns		(1 mark
((ii)	Explain why the gas in (b)		(1 mark
(Give	reasons why excess hydroge	en chloride gas is dissolved	using the funnel arrangemen (2 marks
	••••••			
	•••••		,	
		what will be observed when		
A n b	State Anoti methy	what will be observed when her experiment was carried ylbenzene and water in sepa litmus papers and marble chi	out where hydrogen chlorarate beakers. The resultirips.	stion tube is complete. (1 mark
A n b	StateAnot	her experiment was carried ylbenzene and water in sepalitmus papers and marble chi	out where hydrogen chlor arate beakers. The resultir ips.	stion tube is complete. (1 mark
A n b	State Anoti methy	what will be observed when her experiment was carried ylbenzene and water in sepa litmus papers and marble chi	out where hydrogen chlorarate beakers. The resultirips.	stion tube is complete. (1 mark
A n b	State Anoti methy	her experiment was carried ylbenzene and water in sepalitmus papers and marble child write the observations made. Solution of hydrogen	out where hydrogen chlor arate beakers. The resultir ips.	stion tube is complete. (1 mark

(2 marks)

		(ii)	Explain the observations in (e) (i).	(2 marks)
6.	(a)	In Ke	nya, sodium carbonate is extracted from trona at Lake Magadi.	
		(i)	Give the formula of trona.	(1 mark)
		(ii)	Name the process of extracting sodium carbonate from trona.	(1 mark)
SIIS				

(b) The flow chart in **Figure 5** summarises the steps involved in the production of sodium carbonate. Use it to answer the questions that follow.

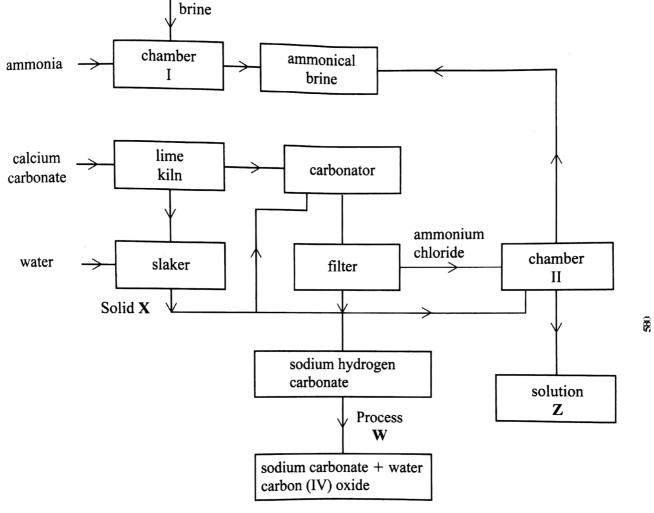


Figure 5

(i)	Name the process illustrated in Figure 5 . (1 mark	()
(ii)	Identify the starting raw materials required in the production of sodium carbonate (2 marks)	
		. 0115

Kenya Certificate of Secondary Education, 2018 233/2

14

(iii)	Write equations for the two reactions that occur in the carbonator.	(2 marks)
(iv)	Name two substances that are recycled.	(1 mark)
		•••••
		•••••
(v)	Identify:	
	Solid X;	(1 mark)
	Process W.	(1 mark)
(vi)	Write an equation for the reaction that produces solution Z .	(1 mark)
(vii)	Apart from softening hard water, state two other uses of sodium carb	(2 marks)

THIS IS THE LAST PRINTED PAGE