For more visit : eazyarabic.com

5.1.2 Mathematics Alternative A Paper 2 (121/2)

No.	Marking scheme	marks	comments	
1.	$\frac{\sqrt{5} + 3}{\sqrt{5} - 2} = \frac{\left(\sqrt{5} + 3\right)}{\left(\sqrt{5} - 2\right)} \times \frac{\left(\sqrt{5} + 2\right)}{\left(\sqrt{5} + 2\right)}$ $= \frac{5 + 2\sqrt{5} + 3\sqrt{5} + 6}{5 - 4}$	M1		
		- MII		
	$= 11 + 5\sqrt{5}$	A1		
		2		
2.	Let the ratio of X to Y = x: y $\frac{60x + 72y}{x + y} = 70$	Ml	Let the ratio of X to Y = 1 $\frac{60 + 72n}{1 + n} = 70$	l: <i>n</i> M1
	60x + 72y = 70x + 70y 10x = 2y		60 + 72n = 70 + 70n 2n = 10	
	$\frac{x}{y} = \frac{2}{10} or \frac{1}{5}$	A1	n = 5 $\therefore \text{Ratio } x: y = 1:5$	Al Bl
	$\therefore \operatorname{Ratio} x : y = 1:5$	B1 3		
3.	$P\alpha \frac{1}{L^2}$ $P = \frac{K}{L^2}$ $0.625 = \frac{K}{16}$ $K = 10$ When L = 0.2 $P = \frac{10}{0.2^2}$ $= 250$	M1 M1 A1		
		3		

KCSEREVISION . COM

KCSEREVISION . Com

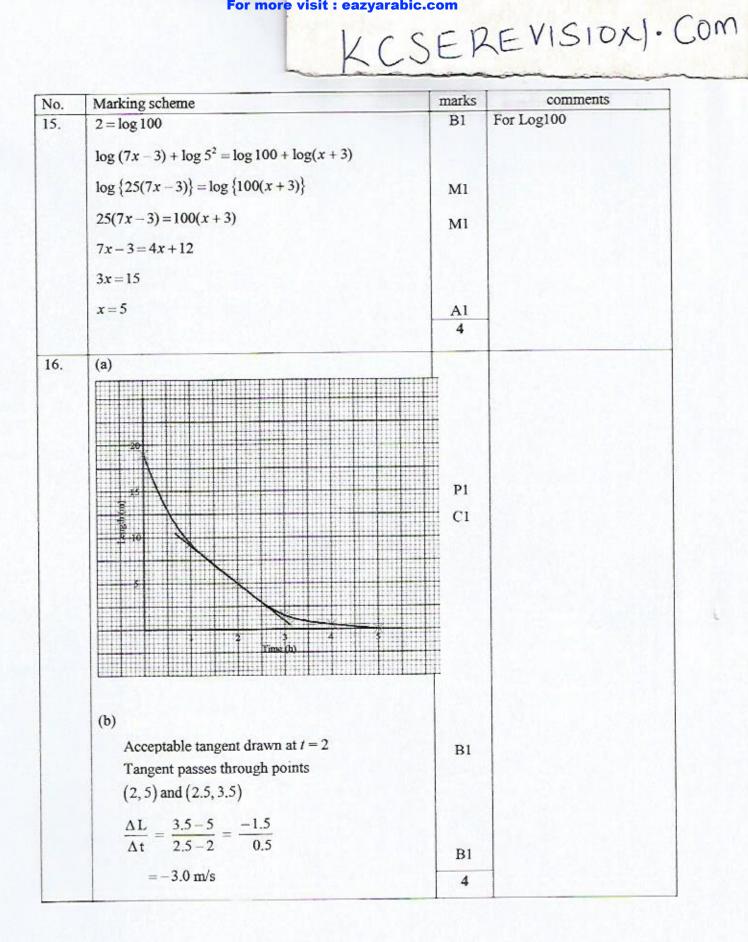
No.	Marking scheme	marks	comments
4.	Angle at centre = $2 \times 150^{\circ}$	M1	May be implied
	= 300°	A1	
		2	
5.	x = 13 - 3y		
	$(13-3y)^2 + 3y^2 = 43$	M1	eliminating one variable
	$169 - 78y + 12y^2 = 43$		
	$12y^2 - 78y + 126 = 0$		
	$2y^2 - 13y + 21 = 0$		
	(2y-7)(y-3) = 0	MI	correct attempt to solve the quadratic
	y = 3 or 3.5	A1	Both (x, y) pairs $$
	When $y = 3$, $x = 4$	B1	bour (x, y) pairs v
	When $y = 3.5, x = 2.5$	4	
6.	(a)	-	
	$\frac{\frac{6}{10}}{\frac{4}{10}} = \frac{1}{10} \times \frac{5}{9} + \frac{4}{10} \times \frac{3}{9} = \frac{6}{10} \times \frac{5}{9} \times \frac{5}{9} + \frac{4}{10} \times \frac{3}{9} = \frac{6}{10} \times \frac{5}{9} \times$	Bl	
	$= \frac{1}{3} + \frac{2}{15} \\ = \frac{7}{15}$	A1	(or equivalent)
		3	

216

-

KCSEREVISION

No.		g scheme			marks	comments
7.	$\frac{dy}{dx} = 2$	2x - 14				
	At the t	turning poir	ıt			
	$\frac{dy}{dt} = 2$	2x - 14 =	0		MI	
	dx					
	$\Rightarrow x = 7$ y = 49 - 98 + 10 = -39				A1	2
	Coordin	ate of turni	ng point =	(7,-39)	Bl	
		-			3	
	Perimet	er of sector	$=\frac{60}{360}\times 27$	r + 2r	M1	
			$=2r+\frac{1}{3}r$	πr	Al	
					2	
	Score	No. of	d = x - 69	fd		
	x	students		Id		
	59	2	-10	-20		
	61	3 5	-8	-24	B1	for d
	65	5	-4	-20		
	k	6 7	k -69	6(k-69)	B1	for fd
	71	7	2 3	14		
	72	4		12		
	73	2	4	8		Alt
	75	1	6	6		$\bar{x} = A + \frac{\sum f(x - A)}{N}$
		$\Sigma f = 30$				$x = A + \frac{N}{N}$
						= 69 + -1.2 = 67.8 B1
	Σ	ld 6k -	438		M1	Also,
	Σ	$rac{f}{f} = -\frac{1}{3}$	$\frac{438}{0} = -1$.2	IVII	$x = \frac{1632 + 6k}{20}$ B1
	6 <i>k</i>	= 402				30 Therefore.
	k	= 67			A1	$\frac{1632 + 6k}{30} = 67.8 $ M1
						k = 67 A1
					4	


KCSEREVISION . COM

No.	Marking scheme	marks	comments
10.	Amplitude = 3	B1	
	$Period = \frac{360}{2} = 180^{\circ}$	B1	
	$renou = \frac{1}{2} = 100$	2	
11.	(a)		
	$\sin \theta = \frac{25}{50}$	M1	
	$\theta = \operatorname{Sin}^{-1}\left(\frac{1}{2}\right)$		
	= 30°	A1	
	(b)		
	$BE = \sqrt{(90^2 + 50^2 + 10^2)}$	M1	
	$=\sqrt{10700}$ = 103.44	A1	
	= 103.44	4	
12.	Tax before relief		
12.	$= \begin{cases} 10164 \times 0.1 + 9576 \times (0.15 + 0.2 + 0.25) \\ +2108 \times 0.3 \end{cases}$	M1	For steps
	= 7394.4 Net tax = Ksh (7394.4 - 1162)	M1	For subtraction of relief
	= Ksh 62.32.4	A1	
		3	

KCSEREVISION . COM

No.	Marking scheme	marks	comments
13.	$\mathbf{AB} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ $\mathbf{AC} = \begin{pmatrix} 7 \\ -1 \end{pmatrix} - \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 10 \\ -5 \end{pmatrix}$	B1	
	$\begin{pmatrix} 4 \\ -2 \end{pmatrix} = k \begin{pmatrix} 10 \\ -5 \end{pmatrix}$ $k = 0.4$	B1	
	Thus AB // AC and A is a common point.	B1	
	:. Points A, B and C are collinear.	3	
14.	Let $M^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$		
	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -7 & 2 & 4 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} -3 & 0 & 2 \\ 2 & -1 & -1 \end{pmatrix} $	M1	Or equivalent
	$ \begin{vmatrix} -7a + 2b &= -3 \\ 2a - b &= 0 \text{ or } b &= 2a \end{vmatrix} $ $ \begin{vmatrix} -7c + 2d &= 2 \\ 2c - d &= -1 \text{ or } d &= 2c + 1 \end{vmatrix} $	M1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	М1	
	Therefore		
	$M^{-1} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	Al	
		4	

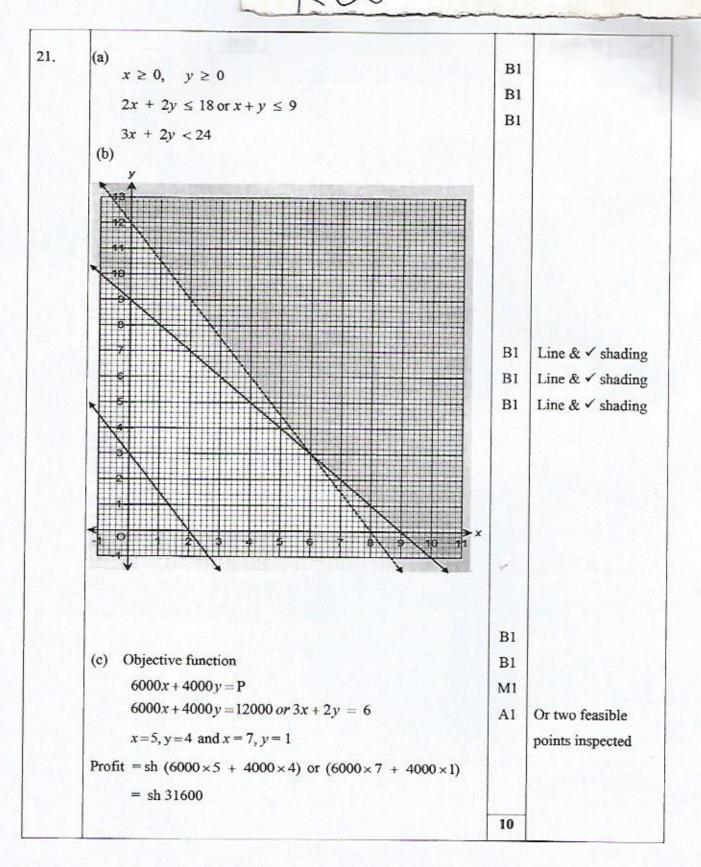
For more visit : eazyarabic.com

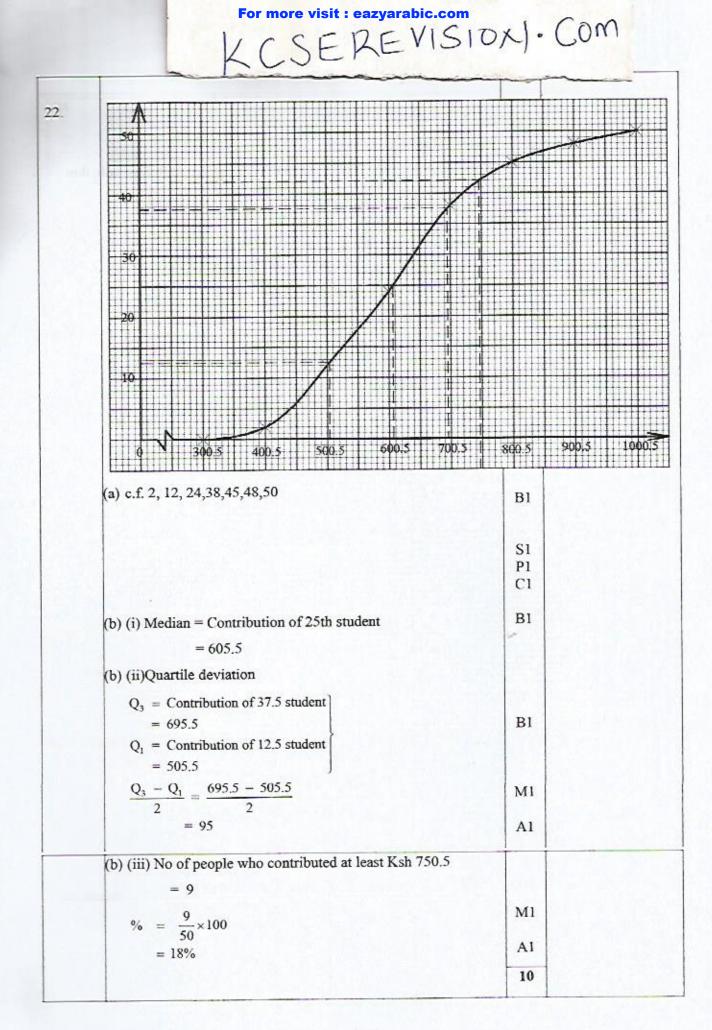
KCSEREVISION .. COM

No.	Marking scheme	marks	comments
17.	(a)		
	$ar^3 = a + d$	B1	
	$ar^6 = a + 9d$	B1	
	(b)		
	From (a) above		Alt
	$d = ar^3 - a$		$\frac{a+d}{a} = \frac{a+9d}{a+d} \text{M1}$
	$a+9(ar^3-a) = ar^6$	M1	$\begin{vmatrix} a & a + d \\ a^2 - 7ad = 0 \end{vmatrix}$
	$a+9ar^3-9a = ar^6$		d = 7a
	$ar^6-9ar^3+8a = 0$		$a + 7a = ar^3$ M1
	$r^6 - 9r^3 + 8 = 0$	M1	$8a = ar^3$ $8 = r^3$ MI
	$(r^3-1)(r^3-8) = 0$	M1	r = 2 A1
	r = 1 or r = 2		
	$\mathbf{r} = 2$	A1	-
	(c)		Sale Sale
	$ar^9 = 5120$		
	$a = \frac{5120}{2^9} = 10$	B1	
	$a+d = 10 \times 2^3 = 80$		
	$\therefore d = 80 - 10 = 70$	B1	
	(d)		
	$S_{20} = \frac{20}{2} \{20 + 19 \times 70\}$	M1	
	=13500	Al	
		10	

KCSEREVISION

No.	Marking scheme	marks	comments
8.	(a) Value of a plot after 2 years		
		M1	
	$= 400000 \times 1.1^2$	INII	
	= Ksh. 484 000	A1	
	(b)		
	$558400 = 400000(1.1)^{t}$	M1	
	$1.1^{t} = \frac{558400}{400000}$		
	$1.1^{t} = 1.396$		
	$t \log 1.1 = \log 1.396$	M1	
	$t = \frac{\log 1.396}{\log 1.1} = 3.500$	M1	
	= 3 years 6 months (or 42 months)	A1	
	(c)		-
	Let the number of plots bought be x		
			Alt
	$x \times 400\ 000 \times (1.1)^4 = 2\ 928\ 200$	M1	Let $V_4 = Value of each$
	2 928 200 2 928 200		plot after 4yrs
	$x = \frac{2928200}{400000 \times (1.1)^4} = \frac{2928200}{585640}$		$V_4 = 400000 \times 1.1^4$ M1 = 585640
	= 5	A1	Profit = 585640 - 400000
	$Profit = 2928200 - 5 \times 400000$		= 185640 Al
	= 928 200		$\% \text{ profit} = \frac{185640}{400000} \times 100 $ M1
	% profit = $\left(\frac{928200}{2000000}\right) \times 100\%$	M1	= 46.41% AI
	= 46.41%	A1	
		10	

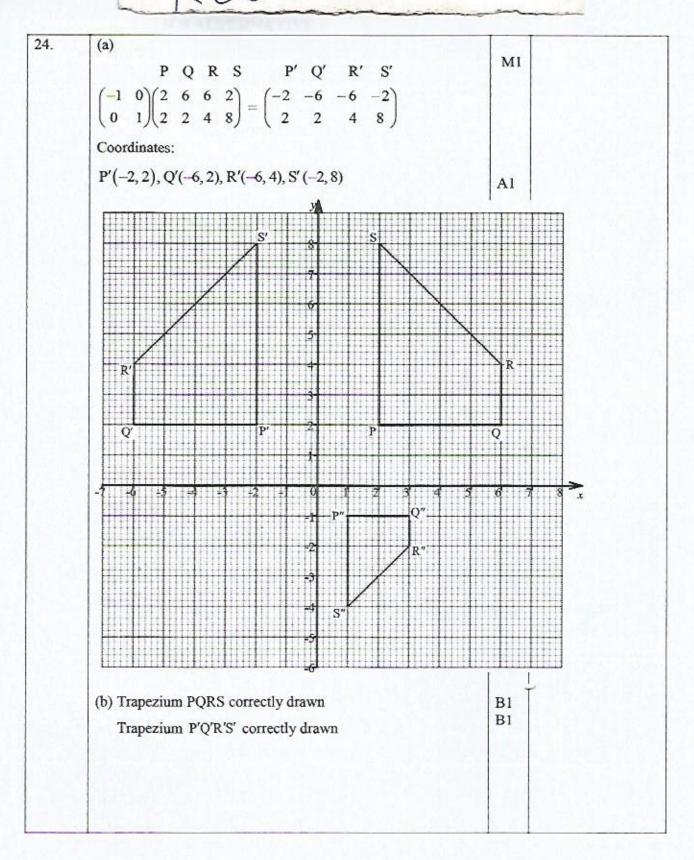

KCSEREVISION


No.	Marking scheme	marks	comments
19.	N O	I	
		\rightarrow	
	(a)(i) ⊥ bisector to line LM	B1	
	Bisector to ∠KLM	B1	4
	Position of P correctly identified	B1	
	(ii) ⊥ bisector to line KL		
	Correct centre used	Bl	
	Locus of Q correctly drawn	B1 B1	
	(b) (i) Correct region R shaded and labelled	B1	
	(ii) r = 40 m Area of region R	B1	
	$= \frac{90}{360} \times 3.142 \times 40^2 - \frac{1}{2} \times 40 \times 40$	M1	
	$= 1256.8 - 800$ $= 456.8 m^2$	A1	
		10	

KCSEREVISION . COM

No.	Marking scheme	marks	comments
20.	(a)(i) Distance in nm		
	= 24×90		
	= 2160 nm	B1	
	(a)(ii) Distance Km		
	= 2160×1.853		
	= 4002.48 km	B1	
	(b) Position of R		
	$1^\circ = 60 \cos 10 \mathrm{nm}$	B1	
	$\theta = \angle PO_1 R$		
	$\theta = \frac{2160}{60\cos 10}$	M1	
	= 36.56°	A1	
	Position of R = $(10^{\circ}\text{S}, (40 + 36.56)^{\circ}\text{E})$	M1	
	$= (10^{\circ}\text{S}, 76.56^{\circ}\text{E})$	Al	
	(c) Local time at R		
	Longitude difference between P and $R = 36.56^{\circ}$		
	Time difference = $\frac{36.56 \times 4}{60}$	MI	
	1 ime différence = $\frac{60}{60}$		
	=2hrs 26mins	Al	
	Local time at R		
	= 1100h + 2h 26min		
	= 1326h		
	= 1.26 pm	B1	
		10	

KCSEREVISION



KCSEREVISION . Com

23.

(a) (i) $\mathbf{B}\mathbf{A} = \mathbf{a} - \mathbf{b}$	B1	
(ii) $\mathbf{OY} = \mathbf{b} + \frac{1}{4}(\mathbf{a} - \mathbf{b})$	М1	Accept ratio thm $OY = \frac{3}{4}b + \frac{1}{4}$
$=\frac{3}{4}\mathbf{b}+\frac{1}{4}\mathbf{a}$	Al	
$(iii) \mathbf{B} \mathbf{X} = -\mathbf{b} + \frac{1}{2}\mathbf{a}$	BI	
(b)		
$\mathbf{OC} = h\left(\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}\right) \qquad (i)$	B1	1.
$\mathbf{OC} = \mathbf{b} + k \left(\frac{1}{2} \mathbf{a} - \mathbf{b} \right) \qquad (ii) \int_{-\infty}^{\infty} \mathbf{b} \mathbf{c} \mathbf{b} d\mathbf{b} \mathbf{c} \mathbf{b}$		
$h\left(\frac{1}{4}\mathbf{a}+\frac{3}{4}\mathbf{b}\right)=\mathbf{b}+k\left(\frac{1}{2}\mathbf{a}-\mathbf{b}\right)$		
$\frac{1}{4}ha + \frac{3}{4}hb = \frac{1}{2}ka + (1-k)b$	M1	Equating
$\frac{1}{4}h = \frac{1}{2}k \implies h = 2k \qquad (iii)$		
$\frac{3}{4}h = 1 - k \qquad (iv) \int$	M1	Extracting expressions in h & k
$\frac{3}{4}(2k) = 1-k$	M1	Attempt to solve
10k = 4		
$k = \frac{2}{5}$ $h = \frac{4}{5}$	A1	OW-1 if vector sig Galitted
$h=\frac{4}{5}$	B1	
	10	

KCSEREVISION . COM

For more visit : eazyarabic.com

KCSEREVISION . COM

(c) (i) $\begin{pmatrix} P' & Q' & R' & S' & P'' & Q'' & R'' & S'' \\ \begin{pmatrix} -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -2 & -6 & -6 & -2 \\ 2 & 2 & 4 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 & 1 \\ -1 & -1 & -2 & -4 \end{pmatrix}$ **B1** (c) (ii) Trapezium P"Q"R"S" correctly drawn **B1** (d) (i) The matrix is N⁻¹ Det = $-\frac{1}{2} \times -\frac{1}{2} - 0 \times 0$ $=\frac{1}{4}$ $\mathbf{N}^{-1} = 4 \begin{pmatrix} -\frac{1}{2} & \mathbf{0} \\ \mathbf{0} & -\frac{1}{2} \end{pmatrix}$ M1 $= \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$ A1 (d)(ii) Enlargement centre O(0, 0) B1 S.F = -2**B1** 10