4.5 **PHYSICS (232)**

4.5.1 Physics Paper 1 (232/1)

1.	5.32 cm				
2.	 magnitude of the force The perpendicular distance between the force and the pivot. 	(1 mark)			
3.	Patmosphere = Pmercury + pair enclosed;				
	Pair = 760 - 600; = 160 mm Hg;	(3 marks)			
4.	(a) $F = Ke;$ 20 = 0.5 K; $K = 40 Ncm^{-1}$	(2 marks)			
	(b) $F = 40 \times 0.86 =$ = 34.4 N;	(1 mark)			
5.	- Weight of object in air				
	- Weight of object when fully immersed in fluids	(2 marks)			
6.	Upthrust = weight in air - weight of object in fluid.	(1 mark)			
7.	Wood is a poor conductor of heat; hence heat is used to burn paper, while most heat is conducted away by copper; hence paper takes long to burn.				
8.	Clockwise moments = anticlockwise moments; 0.18x = 1(50 - x) + 0.12(100 - x) 0.18x = 50 - x + 12 - 12x 0.18x = 62 - 1.12x 7.30x = 62 x = 47.69 cm;				
9.	Air is compressible; so the transmitted pressure is reduced;	(2 marks)			
10.	The high velocity of the gas causes a low pressure region; Atmospheric pressure is higher; Pressure difference draws air into the region;				
11.	Water molecules have a high adhesion forces; With glass molecules and hence rise up the tube while mercury molecules have greater cohesion; Forces within than adhesion with glass hence do not rise up.				

12.	Allow for expansion;			
	Water expands on cooling between 4° C and 0° C;	(1 marks)		

(1 mark)

13. Diffusion of the ink molecules;

SECTION B

14.	(a)	-	increasing the angular velocity;	
		-	Reducing the radius of the path;	(2 marks)
	(b)	(i)	Tension in the string;	(1 mark)
		(ii)	Arrow to centre of circle;	(1 mark)
		(iii)	Direction of motion of object changes and causes the velocity to change with	h
		(iv)	time; <u>MV</u> ;	(1 mark)
			2	
			<u>r</u>	
			$= \frac{0.5 \# 8}{2}^{2}$	
				(2 1)
			= 16N;	(3 marks)
	(c)	(i)	$V^2 = u^2 + 2as;$	
			0 = U - 2 # 10 # 100 u = 2000	
			$44.72 \text{ ms}^{-1};$	(2 marks)
			11.72 1115 ,	(2 marks)
		(ii)	V = u + at;	
			0 = 44.72 - 10 # t	
			t = 4.472 Total time = 2 # 4.472	
			= 8.94 s;	(2 marks)
15.	(a)	Quant	ity of heat required to convert 1 kg of ice at 0° C to water without change in	
15.	(<i>a</i>)		erature;	(1 mark)
	<i>(</i> 1)	-		(1 111111)
	(b)	(i)	E = Pt;	
			= 60 # 5 # 60; = 18000 J;	(3 marks)
				(5 marks)
		(ii)	Mass of water = $190 - 130 = 60g;$	
			$ml_{f} = 60 \# 60 \# 5;$	

1000

$$l_f = 3 \# 105 \text{ J/Kg};$$
 (4 marks)

For More Visit : eazyarabic.com

348

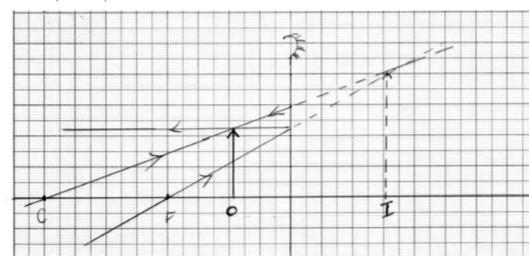
		(iii)	Heat from the surrounding melts the ice;	(1 mark)
16.	(a)	F = M F=2 # = 1		
		frictio	pn force = 12 - 10 = 2N;	(3 marks)
	(b)	(i)	OA - the ball bearing decelerates; as the upthrust increases to a maximum	imum; (2 marks)
			AB - ball attains terminal velocity; when upthrust = weight;	(2 marks)
	(c)	(i)	VR = 2	(1 mark)
		(ii)	To change direction of effort; VR	(1 mark)
		(iii)	Efficiency = $\underline{MA} \# 100;$	
			80 = $MA \# 100\%$ $1.6 = \frac{2}{1.6};$ MA = $1.6;$	
			500	
			L = 500 X 1.6 = 800 N;	(3 marks)
17.	(a)	(i)	F = mg	(5 marks)
17.	(u)	(1)	$= 10 \# 10$ Additional pressure = $\frac{100 \text{ M}}{\text{;}} = 1 \text{ Ncm}_{2};$	
			100 <i>cm</i>	
			new reading = $10 + 1 = 11$ N;	(4 marks)
		(ii)	Pressure has increased; because, when the volume reduces, the coll between the gas molecules and walls of the container increases;	isions (2 marks)
	(b)	(i)	$\underline{\text{Pressure}} = 11 \text{ Ncm}^{-2}$	(1 mark)
		(ii)	$\frac{P_{1}}{T_{1}} = \frac{\underline{P}_{2}}{T_{2}}; $	
			$\frac{7}{300} \frac{300 \# 11 = 330k}{7^2};$	
			10	
			$T_2 = 57^{\circ} C$ ((4 marks)

)

(a)	(i)	 (I) - Reading decreases on spring balance; (II) - Reading on weighing balance increases. 	
	(ii)	As the block is lowered, upthust increases; and hence it apparently weighs less;	(4 marks)
(b)	(i)	Upthrust - weight in air - weight in water = 2.7 - 2.46 $= 0.24 N;$ Reading in weighing balance = $2.8 + 0.24= 3.04 N;$	(2 marks)
	(ii)	Relative density = weight in air; $\underbrace{upthrust}_{Z:Z}$	
		0.24	
		= 11.25;	
		Density = R.d # density of water = $11.25 # 1000$ = 11250 kgm^{-3} ;	(3 marks)
(c)	The h	ydrometer sinks more;	
			(2 marks)
	(b)	(ii) (b) (i) (ii) (c) The h	 (II) - Reading on weighing balance increases. (ii) As the block is lowered, upthust increases; and hence it apparently weighs less; (b) (i) Upthrust - weight in air - weight in water 2.7 - 2.46 0.24 N; (ii) Relative density = weight in air; upthrust 0.24 = 11.25; Density = R.d # density of water = 11.25 # 1000 = 11250 kgm⁻³;

18.

For More Visit : eazyarabic.com


350

4.5.2 Physics Paper 2 (232/2)

SECTION A

- 1. angle of incidence = angle of reflection = 0 (1 mark)
- 2. larger hole acts as many small holes (1 mark) `many overlapping images of same object (1 mark)
- 3. Within the magnet, N and S poles of the dipoles cancel out but at the end of the poles they don't. (1 mark)
- 4. (a) 2V (1 mark)

5.

Object at the intersection of incident ray; Incident rays; (1 mark) (2 marks)

- 6. Ray totally reflected by face AC (1 mark) $i = 60^{\circ}$ hence $r = 60^{\circ}$ (1 mark)
- 7. a = 1 and b = 0 (1 mark)

$$x = neutron \qquad (1 mark)$$
 $Ns Vs$

8.

$$N\rho = 12 \qquad (1 \text{ mark})$$

$$10 = 12 \qquad (1 \text{ mark})$$

$$Vs$$

 $V_{\rm S} = 6 V$ (1 mark)

9. Each lamp on full voltage (1 mark) Failure of one lamp does not affect the others (1 mark)

10.	X rays ionise air molecules between plates	(1 mark)			
	Ions move to plates of opposite sign	(1 mark)			
11.	Sun being hotter produces short wavelength infrared waves which penetrate glass;				
	burning wood produces long wavelength infrared waves which do not penetrate glass.	(1 1)			
		(1 mark)			
12.	K=E-T	(1 mark)			
10		(1 1)			
13.	Arsenic shares 4 of its 5 electrons with germanium.	(1 mark)			
	the extra electron is free for conduction.	(1 mark)			
SECTION B					

14. (a)
$$f_n = 10cm$$
 (1 mark)

 (b) (i) to produce a magnified real image
 (1 mark)

 (ii) to produce a magnified virtual image of the 1st image.
 (1 mark)

 (c) (i) move A so that the object is slightly outside f_n
 (1 mark)

 (ii) move B so that the real image is within f_n .
 (1 mark)

 (d) (i) $m = \frac{24}{-16}$
 (2 marks)

 (ii) $m = \frac{28}{-4}$
 (2 marks)

 (iii) $m = \frac{28}{-4}$
 (2 marks)

 (b) (i) $-$ Negative charge flow from earth to cap.
 (1 mark)

 (b) (i) $-$ Negative charge neutralizes the positive.
 (1 mark)

 (b) (i) $-$ Negative charge neutralizes the positive.
 (1 mark)

$$\begin{array}{c} - & - \\ = & 1 + & 1 \\ \frac{3}{2} & 6 \\ = & 1 \\ 2 \\ C = & 2nF \end{array}$$
 (1 mark)

(ii)
$$Q = cV$$
 (1 mark)
 $=2x4$
 $= 8nC$ (1 mark)
(iii) $Q = 8nC$ (1 mark)
(c)

radical field;Correct direction; (2 marks)

16.

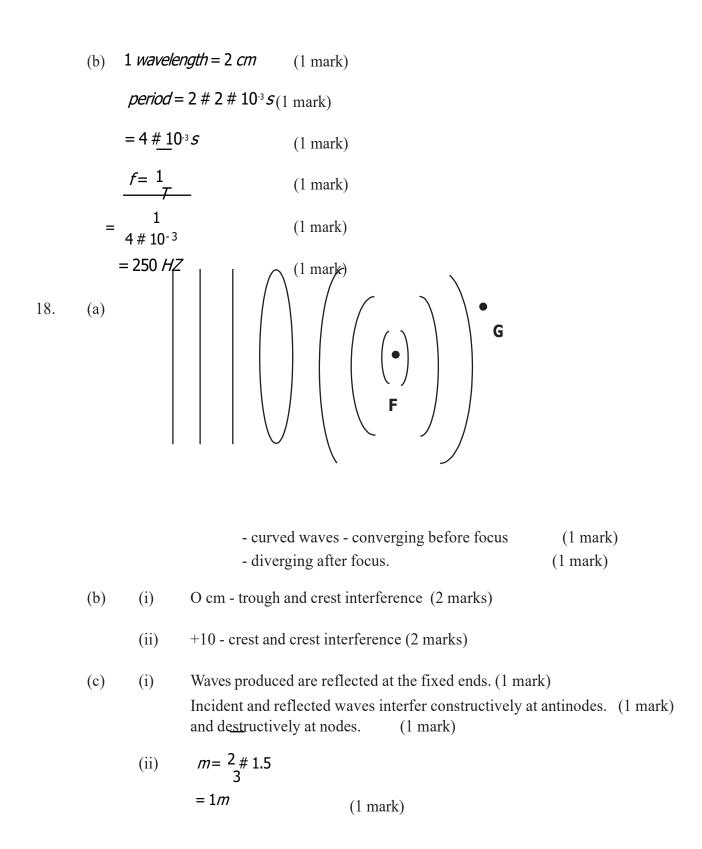
(a)

- (i) Energy = QV (1 mark)
- (ii) Power = $\underline{E} = \underline{Qv} (1 \text{ mark})$ (iii) $I = \frac{Q}{t}$ (rate of flow of charge) (1 mark)

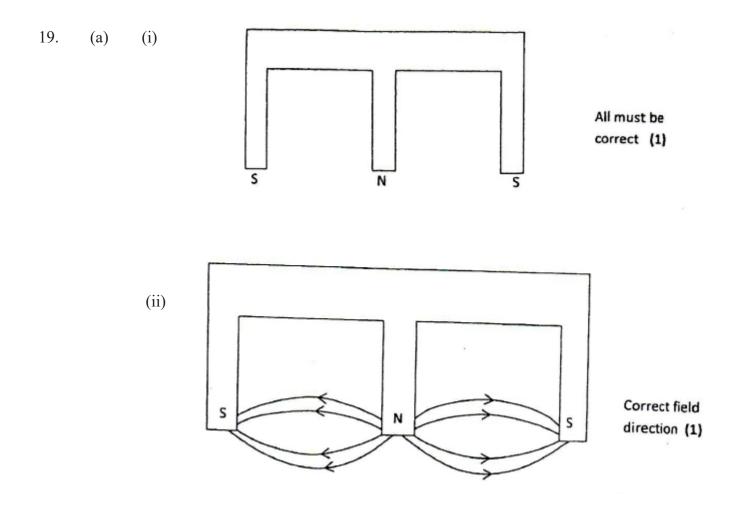
$$P = \frac{Q}{t} \cdot V$$

$$P = I \cdot V \quad (1 \text{ mark})$$

(b) Power = $VI = 20 \times 60 (1 \text{ mark})$


240 x I = 1200 W (1 mark)

$$= 5A$$
 (1 mark)


4A1 5A hence fuse will blow. (1 mark)

17. (a) (i) Thermionically by cathode (1 mark)

- (ii) causing fluorescence on screen (1 mark)
- (iii) (i) control brightness of fluorescence (1 mark)
 - (ii) to focus the electron beam (1 mark)

For More Visit : eazyarabic.com

- (b) coil moves to and fro (1 mark) force on coil varies direction as current varies in direction. (1 mark)
- (c) (i) dilute sulphuric acid (1 mark)
 (ii) (I) Zinc ions go into acid leaving electrons on the plate (1 mark)
 (II) Give up electrons to discharge hydrogen Ions. (1 mark)
 - (iii) Electrons flow from zinc plate to the copper plate. (1 mark)