| Name      | Index Number          |
|-----------|-----------------------|
| 233/2     | Candidate's Signature |
| CHEMISTRY |                       |
| Paper 2   | Date                  |
| Nov. 2016 |                       |
| 2 hours   |                       |



THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education CHEMISTRY Paper 2 (THEORY) 2 hours

## Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer **all** the questions in the spaces provided.
- (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.
- (e) All working must be clearly shown where necessary.
- (f) This paper consists of 12 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

| Question    | Maximum<br>Score | Candidate's<br>Score |
|-------------|------------------|----------------------|
| 1           | 11               |                      |
| 2           | 12               |                      |
| 3           | 13               |                      |
| 4           | 11               |                      |
| 5           | 10               |                      |
| 6           | 12               |                      |
| 7           | 11               |                      |
| Total Score | 80               |                      |

## For Examiner's Use Only



1. Use the information in the table below to answer the questions that follow. The letters do not represent the actual symbols of the elements.

| Element | Atomic number | Melting point °C |
|---------|---------------|------------------|
| R       | 11            | 97.8             |
| S       | 12            | 650.0            |
| Т       | 15            | 44.0             |
| U       | 17            | -102             |
| V       | 18            | -189             |
| W       | 19            | 64.0             |

~

- (a) Give a reason why the melting point of:
- (2 marks) (i) S is higher than that of R. \_\_\_\_\_ ..... ..... (ii) V is lower than that of U. (2 marks) ..... \_\_\_\_\_ ..... How does the reactivity of W with chlorine compare with that of R with chlorine? (b) (2 marks) \_\_\_\_\_ \_\_\_\_\_ Write an equation for the reaction between T and excess oxygen. (1 mark)(c) \_\_\_\_\_ .....

| (d) | When 1.15 g of R was reacted with water $600 \text{ cm}^3$ of gas was produced. Determ relative atomic mass of R. (Molar gas volume = $24000 \text{ cm}^3$ ) | nine the<br>(3 marks) |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|     |                                                                                                                                                              |                       |
|     |                                                                                                                                                              |                       |
|     |                                                                                                                                                              |                       |
| (e) | Give one use of element V.                                                                                                                                   | (1 mark)              |
|     |                                                                                                                                                              |                       |
| (a) | Describe the process by which nitrogen is obtained from air on a large scale.                                                                                | (4 marks)             |
|     |                                                                                                                                                              |                       |
|     |                                                                                                                                                              |                       |
|     |                                                                                                                                                              |                       |
|     |                                                                                                                                                              |                       |
| (b) | Study the flow chart below and answer the questions that follow.                                                                                             |                       |
|     | Nitrogen gas                                                                                                                                                 |                       |
| [   | Ammonia Copper (II) oxide Copper                                                                                                                             |                       |
| L   | Step (I) Air<br>Platinum-Rhodium<br>High temperature<br>Water                                                                                                |                       |
|     | Gas J                                                                                                                                                        |                       |
| l   | Step (II) Air                                                                                                                                                |                       |
|     | Nitrogen<br>(IV) oxideWater, air<br>Step (III)Nitric (V)<br>acidAmmonia<br>Step (IV)Ammonia<br>nitrate                                                       |                       |
|     | Step (V) Heat                                                                                                                                                | 1                     |
|     | Products                                                                                                                                                     |                       |

Kenya Certificate of Secondary Education, 2016 233/2

2.

,

| (i)   | Identify gas J.                                                 | (1 mark)                                |
|-------|-----------------------------------------------------------------|-----------------------------------------|
|       |                                                                 |                                         |
| (ii)  | Using oxidation numbers show that ammonia is the reducing agent | in step (VI)<br>(2 marks)               |
|       |                                                                 |                                         |
|       |                                                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|       |                                                                 |                                         |
| (iii) | Write the equation for the reaction that occurs in step (V).    | (1 mark)                                |
|       |                                                                 |                                         |
| (iv)  | Give <b>two</b> uses of ammonia nitrate.                        | (2 marks)                               |
|       |                                                                 |                                         |
|       |                                                                 |                                         |
|       |                                                                 |                                         |

5

×

(c) The table below shows the observation made when aqueous ammonia was added to cation of elements E, F and G until in excess.

| Cation of | Addition of a few drops of aqueous ammonia | Addition of excess aqueous ammonia |
|-----------|--------------------------------------------|------------------------------------|
| Е         | White precipitate                          | Insoluble                          |
| F         | No precipitate                             | No precipitate                     |
| G         | White precipitate                          | Dissolves                          |

(i) Select the cation that is likely to be Zn<sup>2+</sup>. (1 mark)
(ii) Given that the formula of the cation of element E is E<sup>2+</sup> write the ionic equation for the reaction between E<sup>2+</sup> (aq) and aqueous ammonia. (1 mark)



Kenya Certificate of Secondary Education, 2016

3. (a) Methanol is manufactured from carbon (IV) oxide and hydrogen gas according to the equation.

 $CO_{2(g)} + 3H_{2(g)} \rightleftharpoons CH_3OH_{(g)} + H_2O_{(g)}$ 

The reaction is carried out in the presence of a chromium catalyst at 700K and 300k pa. Under these conditions, equilibrium is reached when 2% of the carbon (IV) oxide is converted to methanol.

(i) How does the rate of the forward reaction compare with that of the reverse reaction when 2% of the carbon (IV) oxide is converted to methanol? (1 mark)

| ) |
|---|
|   |
|   |
|   |
|   |
| • |
|   |

916504

-

(b)

6 Explain why in practice the reaction is carried out at 700K but not at 500K Π (2 marks) \_\_\_\_\_ ..... ..... Hydrogen peroxide decomposes according to the following equation:  $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$ In an experiment the rate of decomposition of hydrogen peroxide was found to be  $6.0 \times 10^{-8} \text{ moldm}^{-3}\text{S}^{-1}$ (i) Calculate the number of moles per dm<sup>3</sup> of hydrogen peroxide that has decomposed within the first 2 minutes. (2 marks) ..... ..... ..... In another experiment, the rate of decomposition was found to be (ii)  $1.8 \times 10^{-7}$  moldm<sup>-3</sup>S<sup>-1</sup>. The difference in the two rates could have been caused by addition of a catalyst. State giving reason, one other factor that may have caused the difference in the two rates of decomposition. (2 marks) \_\_\_\_\_ ..... \_\_\_\_\_

Kenya Certificate of Secondary Education, 2016

4. (a) The set up below can be used to produce sodium hydroxide by electrolysing brine.



(b) Study the information given below and answer the questions that follow

| Half reactions                                    | Electrode potential $E^{\Theta}V$ |
|---------------------------------------------------|-----------------------------------|
| $D_{(aq)}^{2+} + 2e \longrightarrow D_{(s)}$      | -0.13                             |
| $E_{(aq)}^+ + e \longrightarrow E_{(s)}$          | +0.80                             |
| $F^{3+}_{(aq)} + e \longrightarrow F^{2+}_{(aq)}$ | +0.68                             |
| $G_{(aq)}^{2+} 2e \longrightarrow G_{(s)}$        | -2.87                             |
| $H^{2+}_{(aq)} + 2e \longrightarrow H_{(s)}$      | +0.34                             |
| $J^+_{(aq)} + e \longrightarrow J^{(s)}$          | -2.71                             |

#### Kenya Certificate of Secondary Education, 2016 233/2

Turn over

| (i)   | Construct an electrochemical cell that will produce the largest e.m.f. (3 marks)                   |
|-------|----------------------------------------------------------------------------------------------------|
|       |                                                                                                    |
|       |                                                                                                    |
|       |                                                                                                    |
|       |                                                                                                    |
|       |                                                                                                    |
|       |                                                                                                    |
| (ii)  | Calculate the e.m.f. of the cell constructed in (i) above. (2 marks)                               |
|       |                                                                                                    |
|       | ·····                                                                                              |
|       |                                                                                                    |
|       |                                                                                                    |
| (iii) | Why is it not advisable to store a solution containing E+ ions in a container made of H? (2 marks) |
|       |                                                                                                    |
|       |                                                                                                    |
|       |                                                                                                    |
|       |                                                                                                    |

5. The diagram below represents a set up of an electrolytic cell that can be used in the production of aluminium.



Konva Cortificate of Secondary Education, 2016

| (a) | On the diagram, label the anode.                                                           | (1 mark)           |                                                |
|-----|--------------------------------------------------------------------------------------------|--------------------|------------------------------------------------|
| (b) | Write the equation for the reaction at the anode.                                          | (1 mark)           |                                                |
|     |                                                                                            |                    |                                                |
| (c) | Give a reason why the electrolyte process is not carried out below 950°C.                  | (1 mark)           |                                                |
| (d) | Give a reason why the production of aluminium is not carried out using reducti<br>process. | on<br>(1 mark)     |                                                |
| (e) | Give <b>two</b> reasons why only the aluminium ions are discharged.                        | (2 marks)          | ₽ <b>₩</b> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ |
|     |                                                                                            |                    |                                                |
| (f) | State <b>two</b> properties of duralumin that makes it suitable for use in aircraft indus  | stry.<br>(2 marks) |                                                |
|     |                                                                                            |                    |                                                |
| (g) | Name <b>two</b> environmental effects caused by extraction of aluminium.                   | (2 marks)          |                                                |
|     |                                                                                            |                    |                                                |
|     |                                                                                            |                    |                                                |

Kenya Certificate of Secondary Education, 2016 233/2

| 6. | (a) | Draw the structural formula for all the isomers of $C_2H_3Cl_3$ .                                                                                                                                                                                                                                                                                                                                               | (2 marks)            |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
|    | (b) | Describe <b>two</b> chemical tests that can be used to distinguish between ethene and                                                                                                                                                                                                                                                                                                                           | ethane.<br>(4 marks) |
|    | (c) | The following scheme represents various reactions starting with propan-1-ol. Us<br>answer the questions that follow.<br>Prop-1-ene       Step II       Polymer X         Dehydration       Step I       Polymerisation         Dehydration       Step I       Propan-1-ol         Oxidation       Step III       Step IV         Propanoic acid       Step IV       Products         Add sodium       carbonate | se it to             |
|    |     | (i) Name one substance that can be used in Step I.                                                                                                                                                                                                                                                                                                                                                              | (1 mark)             |
|    |     | (ii) Give the general formula of X.                                                                                                                                                                                                                                                                                                                                                                             | (1 mark)             |

Konva Cortificate of Secondarv Education, 2016

(1 mark)(iii) Write the equation for the reaction in Step IV. ...... Calculate the mass of propan-l-ol which when burnt completely in air at room (iv) temperature and pressure would produce  $18 \text{dm}^3$  of gas. (C = 12.0, O = 16.0, H = 1.0; molar gas volume = 24dm<sup>3</sup>) (3 marks) ..... \_\_\_\_\_ Write an equation to show the effects of heat on the nitrates of: Potassium (1 mark)(i)\_\_\_\_\_ ..... (ii)Silver (1 mark)..... The table below gives information about elements  $A_1, A_2, A_3$  and  $A_4$ . Elements Atomic radius Atomic radius Atomic Number (nm)(nm)3 A1 0.134 0.074 A2 5 0.090 0.012

0.143

0.099

0.050

0.181

916504

7.

(a)

(b)

A3

A4

13

17

| 1 | 2 |
|---|---|
| _ | _ |

| (i)   | In wh                             | the period of the periodic table is element $A_2$ ? Give a reason. | (2 marks) |
|-------|-----------------------------------|--------------------------------------------------------------------|-----------|
|       |                                   |                                                                    |           |
|       |                                   |                                                                    |           |
|       | •••••                             |                                                                    |           |
|       |                                   |                                                                    |           |
| (ii)  | Explain why the atomic radius of: |                                                                    |           |
|       | Ι                                 | A1 is greater than that of A2                                      | (2 marks) |
|       |                                   |                                                                    |           |
|       |                                   |                                                                    |           |
|       |                                   |                                                                    | ••••••    |
|       |                                   |                                                                    |           |
|       | II                                | A1 is smaller than its ionic radius.                               | (2 marks) |
|       |                                   |                                                                    |           |
|       |                                   |                                                                    |           |
|       |                                   |                                                                    |           |
|       |                                   |                                                                    |           |
| (iii) | Selec                             | t the element which is in the same group as A3.                    | (1 mark)  |
|       |                                   |                                                                    |           |
|       | ••••••                            |                                                                    |           |

~

(iv) Using Dots (.) and crosses (x) to represent outermost electrons, draw a diagram to show the bonding in the compound formed when A1 reacts with A4. (2 marks)

# THIS IS THE LAST PRINTED PAGE.