

5.4 PHYSICS (232)

5.4.1 Physics Paper 1 (232/1)

SECTION A (25 marks)

1.	Actual reading = 0.38mm (error) = 0.03 Meter reading = 0.35mm ✓	(1 mark)
2.	On sucking air rushes into the straw ✓ through the hole making it difficult ✓ to reduce pressure in the straw by sucking	(2 marks)
3.	- Using detergents/impurities - Raising the temperature	(2 mark)
4.	The flask absorbs heat from the hands and first expands ✓ hence level of liquid ✓ which expands more than the glass causing the rise. ✓	(3 marks)
5.	Wax on rod B drops off first. ✓ The thicker rod conducts heat faster than the thinner one. ✓	(2 marks)
6.	Displacement (1)	(1 mark)
7.	The box shifts the position of the center of gravity of the system towards the right hand ✓ to maintain equilibrium. The student leans in the opposite direction. ✓	(2 marks)

KCSEREVISIONI. Com

0	Taking moments shout the fuler		(3 marks)
8.	Taking moments about the fulcro		(0 111111)
	Sum of clockwise moments – su	illi of anticlockwise moments	
	15x = 10(75 - x)	(x-5)10=(80-x)15	
	15x = 750 - 10x	(x-5)10 = (80-x)15 $25x = 1250$	
	25x = 750	x = 50cm	
	x = 30		
	hence fulcrum at $75-30=45$		
	45+5=50		
9.	Radian is an angle subtended at	the center of a circle by an arc of	(1 mark)
	length equal to the radius of the	circle. ✓	
	OR		
	360		
	$r = \frac{360}{2\pi}$		
	1 radian = <u>57.29</u> ^a		
10.	The assumptions are: the fluid	is	(2 marks)
	(i) flowing steadily,		
	(ii) incompressible,		
	(iii) non-viscous.		
	(any 2)		
11.			(3 marks)
	$\rho = \frac{m}{}$		
	ν		
	650g		
	$\rho = \frac{650g}{800cm^3} \checkmark$		
	0.0105 -3 /		
	U 0.8125gcm ⁻³ ✓		
12.	C ✓		(2 marks)
12.		a higher enging constant	
13	It has a smaller diameter hence E (20N)✓	a nigher spring constant.	(2 marks)
1.0		the bishes the constantion of	
	F = Ma, the smaller the	mass, the higher the acceleration ✓	

SECTION B (55 Marks)

14.(a)	(i)	(3 marks)
	Clamp	
	Stand Stand (3)	
	Stand Stand Metre rule (3)	
	 (ii) - Force due to total mass hung. ✓ - Extension produced by hanging masses. ✓ 	(2 marks)
	(iii) - Plot a graph of force against extension. \checkmark - Determines the slope of the graph \checkmark to get $K = \frac{\Delta F}{\Delta e}$	(2 marks)
(b)	$K = \frac{F}{e} \checkmark$ $= \frac{0.40}{0.60}$ $= 0.667 \checkmark$	(3 marks)
	$\therefore e = \frac{F}{K}$ $= \frac{65}{0.667}$ $= 0.975 \text{ cm} \checkmark$	

KCSEREVISIONI. Com

		earner to an arrangement
15. (a)	Pivot	(z marks)
	Samo	
	Load	
(b)	- Reducing the angle of inclination.	(2 mark)
(0)	- Reducing the friction – using rollers, lubricants etc.	
(c)	(i)	(3 marks)
	Load	
	(ii) V.R. = No, of strings supporting the load.	(1 mark)
	= 4.5 ✓	(3 marks)
	(iii) $\eta = \frac{MA}{VR} \times 100 \checkmark$	
	$= \frac{600 \div 200}{5} \times 100$	
	= 60%	
16. (a)	Heat capacity is the quantity of heat energy required to raise the tem-	(1 mark
16. (a)		(1 mark)

KCSEREVISION. Com

(c)	(i) - Measure the mass of the empty beaker M₁. ✓	(3 marks)
	 Measure the mass of the beaker plus the condensed steam M₂ ✓ 	
	- Get the difference between the two masses $(M_2 - M_1) = M$	
	(ii) - Voltage ✓	(2 marks)
	- Current ✓	
	(iii) - Assuming no heat is lost, ✓	(2 marks)
	Heat produced by heater = Heat used to produce steam.	
	VIt = mLv	
	$\therefore Lv = \frac{VIT}{m} \checkmark$	
	 (iv) - Start timing when the steam drops start forming out steadily and Stop immediately the beaker is withdrawn. ✓ 	(lmark)
	(v) Steam is produced at boiling point where temperature is constant.	(1 mark)
17. (a)	Continuous random motion of particles. ✓	(1 mark)
(b)	(i) It accelerates, velocity increases. ✓	(1 mark)
	(ii) As the ball falls through the fluid, the viscous drag increases ✓ until the sum of the viscous drag and the upthrust becomes equal ✓ the weight of the steel ball, hence the resultant force becomes zero. ✓	(3 marks)
(c)	(i) $S = ut + \frac{1}{2}gt^2 \checkmark$ But $u = 0$	(3 marks)
	$S = \frac{1}{2} \times 10 \times 4 \checkmark$ $= 20 \text{ m} \checkmark$	
	(ii) $V = u + at \checkmark$	(3 marks)
	=10×4 ✓	
	$=40ms^1$	A PART OF

272

18. (a)	From $y = mx + c$, ($P = nT + C$)	(THIGHO)
	- m is the slope of the graph hence n is the slope, ✓	
	$\therefore \text{ slope } n = \frac{(8-4)\times10^2}{5-2} \checkmark$	
	$= \left(\frac{4}{3}\right) \times 10^2$	
	$-1.33\times10^2 Nm^{-2}K^{-1}$	
	$n = 133Nm^{-2}K^{-1} \checkmark$	
	C is the y intercept = $1.5 \times \checkmark 10^2 Nm^2 \checkmark$ (extrapolated)	
(b)		(2 marks)
	most ✓ of the temperatures are very low hence the ✓ gas liquefies.	(3 marks)
(c)	$\frac{P_1^V V_1}{T_1} = \frac{P_2^V V_2}{T_2} \checkmark$	(S III.
	$\frac{760 \times 1.5 \times 10^{-3}}{273} = \frac{720 \times V_2}{290} $	
	$V_2 = \frac{760 \times 290 \times 1.5 \times 10^{-3}}{273 \times 720}$	
	$= 1.682 \times 10^{-3} m^3 \checkmark$	
(d		(3 marks
	- Attraction of between the molecules is negligible.	
	 Volume of the molecule is negligible compared to the volume of the container occupied by the gas. ✓ 	
	- The molecules undergo elastic collisions. ✓	
	- The length of time of a collision is negligible compared to the time	
	between collisions.	
	(Any three)	