2014 Paper 2

For more visit: eazyarabic.com

F

4. (a)
$$V = f\lambda \sqrt{1}$$

 $\lambda = \frac{3.0 \times 10^8}{4 \times 10^6} \sqrt{1}$
75 m $\sqrt{1}$

5.

7.

8.

6. (a) Electrons arbsorb enough energy and are ejected $\sqrt{\text{leaving the electroscope positively}}$ charged $\sqrt{\text{the leaf is repelled by the stem}}$.

Correct polarity on each magnet

1 mark for correct bias

1 mark for both ammeter and voltmeter

1 mark for means of varying the p.d. across the diode.

9.
$$226_{88}Ra \longrightarrow {}^{4}_{2}He + {}^{x}_{y}Q$$

(a)
$$4 + x = 226$$
$$x = 222\sqrt{}$$

(b)
$$2+y = 88$$

 $y = 86\sqrt{}$ 1

10. - estimate the quantity of charge $\sqrt{1}$

- test for insulating properties $\sqrt{1}$
- test for the sign of charge $\sqrt{1}$
- test for presence of charge $\sqrt{1}$

(any two correct)

1

11. It stops the fast moving electrons $\sqrt{}$ whose kinetic energy is converted to heat.

12.

1 mark for ray incident on hypotenuse

1 mark for showing two internal reflections

$2.0 \times 10^{-4} \times 1$	1 mark for substitution
-1.6×10^{-19}	
$= 1.25 \times 10^{15}$ electrons	1 mark for answer

SECTION B

14.	(a)	(i)	Ι	D	-	soft iron arma	ture $$	1
			II	E	-	contacts	\checkmark	1
		(ii)	I.	 Soft iron core is magnetised √ and attracts the armature √ the hammer hits the gong. Contact is broken √ when armature is attracted by the core. The core then loses magnetism. √ The armature loses magnetism and √ springs back makin contact again and the process is repeated. 		$\sqrt{\text{and}}$ ammer hits	1 1	
			II.			mature is re then loses magnetism. $$ m and $$ springs back making s is repeated.	1 1	
	(b)	(i)	$I = \frac{P}{V}$					1
			$=\frac{60}{240}$	- √				1
			= 0.25	A				1
		(ii)	$R = \frac{V}{I}$.	\checkmark			1
			$R = \frac{2}{2}$	$\frac{40 \times 24}{60}$.0	$\sqrt{\text{OR}} \frac{240}{0.25}$		1
			R = 90	60Ω	\checkmark			1

			For more visit:	eazyarabic.com				
15.	(a)	(i)	resistance in the coils. $$		1			
		(ii)	use of thicker copper wires. \checkmark	e of thicker copper wires. $$				
	(b)	(i)	$\frac{N_p}{N_s} = \frac{V_p}{V_s} \qquad \qquad \checkmark$		1			
			$=\frac{240}{12}\qquad \qquad \checkmark$		1			
			$=\frac{20}{1}$ \checkmark		1			
		(ii)	Power input $= V_p I_p$	\checkmark	1			
			$= 240 \times 0.36$	\checkmark	1			
			= 86.4W		1			
		(iii)	Power output = 80W	\checkmark	1			
		(iv)	Efficiency $\frac{power \ output}{power \ input}$		1			
			$=\frac{80}{86.4}$					
			= 92.59%		1			
16. (a)	(a)	(i)	(I) $I_1 = \frac{V}{R_1}$		1			
			(II) $I_2 = \frac{V}{R_2}$	\checkmark	1			
		$(\text{III}) \qquad I_T = I_1 + I_2$						
			$I_T = \frac{V}{R_1} + \frac{V}{R_2}$	\checkmark	1			
		(iii)	$I_T = \frac{V}{R_T}$		1			
			$\frac{V}{R_T} = \frac{V}{R_1} + \frac{V}{R_2}$	\checkmark	1			

divide through by V

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$
, hence $R_T = \frac{R_1 R_2}{R_1 + R_2}$

(iii) As the longitudinal waves pass $\sqrt{}$ molecule R moves along to either side. 1 For a crest, R moves away from source.

