
K.C.S.E YEAR 2010 PAPER 2

1.

a) Which one of the following compounds; urea, ammonia, sugar and copper (II) chloride will conduct an electric current when dissolved in water? Give reasons.

(2 marks)

b) The diagram below shows an electrochemical cell. Study it and answer the questions that follows.

Given the following

$$Fe^{2+}(aq) + 2e$$

Fe (s);
$$E^{\theta} = -0.44V$$

$$Zn^{2+}(aq) + 2e$$

$$Zn (s)$$
; $E^{\theta} = -0.76V$

- i) Show on the diagram using an arrow, the direction of flow of electrons (1 mark)
- ii) Name two subsrances that are used to fill the part labeled L

(2 marks)

- c) In an experiment to electroplate iron with silver, a current of 0.5 amperes was passed through a solution of silver nitrate for an hour
 - i) Give **two** reasons why it is necessary to electroplate iron with silver (2 marks)
 - ii) Calculate the mass of silver that was deposited on iron (Ag = 108, 1 Faraday = 96,500 coulombs) (3mks)

2.

i. Give the name of the following compounds:

i) CH₃

 CH_3 C CH_3

 CH_3

(2 marks)

ii) $CH_3C = CCH_2CH_3$ (1 mark)

ii. Describe a chemical test that can be carried out in order to distinguish between

 CH_3

 CH_3 CH C and CH_3 and $CH_3C = CCH_2CH_3$

 CH_3

(2 marks)

iii. Study the flow chart below and answer the questions that follows

a. Etha noic acid b. Con centr ated Sulp huric (vi) acid

	M	Polymerization	Ethene	Step 1	Ethanol			L
		Hydrogen nickel 150°C N 1) Excess chlorine P 2) U.V. light						
Step 3								

i) Name the compounds:

(2 marks)

- 2. L
- 3. N
- ii) Draw the structural formula of compound M showing two repeat units

(1 mark)

iii) Give the reagent and the conditions used in step I

(1 mark)

iv) State the type of reaction that take place in:

(2 marks)

- a. Step 2
- b. Step 3
- 2. The molecular formula of compound **P** is C₂H₂Cl₄. Draw the two structural formulae of compound P(2 marks)

3. Use the information in the table below to answer the questions that follow. The letters do not represent tha actual symbols of the elements.

Element	Atomic number	Melting point (⁰ C)			
R	11	97.8			
S	12	650.0			
T	15	44.0			
U	17	-102			
V	18	-189			
W	19	64.0			

- a) Give the reasons why the meling point of:
 - i) S is higher than that of R

(1 mark)

ii) V is lower than that of U

(2 marks)

b) How does the reactivity of W with chlorine compare with that of R with chlorine? Explain,

(2 marks)

c) Write an equation for the reaction between T and excess oxygen

(1 mark)

d) When 1.15g of R were reacted with water, 600cm³ of gass was produced.

Determine the relative atomic mass of R. (Molar gas volume = 24000cm³)

(3 marks)

e) Give one use of element V

(1 mark)

4.

a. 50cm³ of 1M copper (II)sulphate solution was placed in a 100cm³ plastic beaker. The temperature of the solution was measured. Excess metal A powder was added to the solution, the mixture stirred and the maximum temperature was repeated using powder of metals **B** and **C**. The results obtained are given in the table below:

A	В	C	
Maximum temperature (⁰ C)	26.3	31.7	22.0
Initial temperature (⁰ C)	22.0	22.0	22.0

1. Arrange the metal **A**, **B**, **C** and copper in order of reactivity starting with the least reactive. Give reasons for the order.

(3 marks)

2. Other than temperature change, state one other observation that was made when the most reactive metal was added to the copper(II) sulphate solution.

(1 mark)

- b. The standard enthalpy change of formation of methanol is -239 kJmol⁻¹.
 - i) Write the thermol chemical equation for the standard enthalpy change of formation of methanol. (1 mark)
 - ii) Methanol is manufactured by reacting carbon(II)oxide with hydrogen at 300°C and a pressure of 250 atmospheres.

The equation for the reaction is:

$$CO_{(g)}$$
 + $2H_{2(g)}$ $CH_3OH_{(g)}$

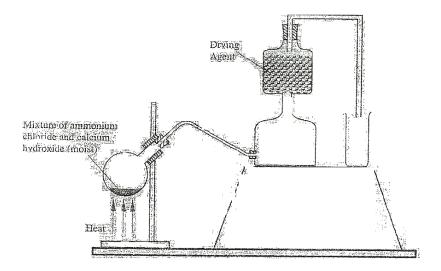
1. How would the yield of methanol be affected if the manufacturing process above is carried out at 300°C and a pressure of 400 atmosphere? Explain

(2 marks)

2. Use the following data to calculate the enthalpy change for the manufacture of methanol from carbon(II)oxide and hydrogen

(3 marks)

$$\begin{array}{ll} CO_{(g)} + {}^{1}\!\!/_{\!\!2} \; O_{2(g)} & CO_{2(g)} \; ; \; \Delta H^{\theta} = -283 k J mol^{-1} \\ H_{2(g)} + \; {}^{1}\!\!/_{\!\!2} \; O_{2(g)} & H_{2}O_{(l)}; \; \Delta H^{\theta} = -286 k J mol^{-1} \end{array}$$

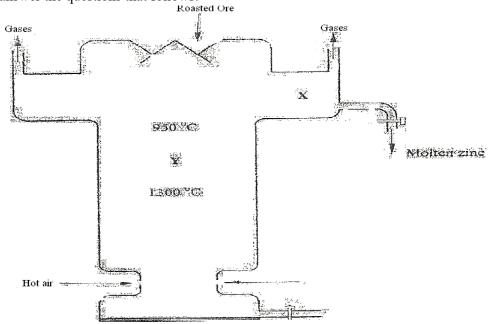

$$CH_2 \; OH_{(l)} + 3/2 \; O_{2(g)} \qquad \qquad CO_{2(g)} + 2H_2O_{(L)}; \; \Delta H^{\theta} = \text{-}715 \text{kJmol}^{\text{-}1}$$

iii) The calculate enthalpy change in part B(ii) (II) aove differ from the standard enthalpy change of formation of methanol. Give a reason.

(1 mark)

5.

a) A student set u the apparatus as shown in the diagram below to prepare and collect dry ammonia gas.


	i)	Identify to	wo mistakes in the so	et up and give a reason	n for each mistal	ζe.	
		(3	8 marks)				
		1. M	Iistake				
		R	eason				
		2. M	Iistake				
			eason				
	ii)		uitable drying agent	for ammonia			
)		mark)				
	;;;)	,	· · · · · · · · · · · · · · · · · · ·	tion that occurred whe	en a mivture of a	mmı	onium chloride
	111)		ım hydrogen was he		in a mixture of a	1111111	omum emoriae
		and careru	iiii iiyulogeli was ilea				
	. ,	D '1	1 . 1, , 6	(1 mark)			
	1V)		one chemical test for	r ammonia gas			
	15	`	mark)				
d	l)	Ammonia	gas is used to manu	facture nitric (V) acid	, as shown belov	W.	
					Gases		
							Wate
r							
		monia	High	Cooling	A	В	Absorption
Aiı	r		temperature	chamber			tower
			1				
Α	۱ir						
			Unit I		Unit II		
Un	it II	I					
Wa	ater(v)acid					
	i)	This proce	ess require the use of	f a catalyst. In which u	init is the cataly	st us	ed?
		(1	mark)				
	ii)	Identify c	ompound A and B				
		(1	mark)				
	iii)	Using oxi	dation number, expl	ain why the conversion	n of ammonia to	nitr	ric(V) acid is
		called cata	alytic oxidation of a	mmonia			
			(2 ma				
	iv)	Ammonia	`	re used in the manufac	cture of ammoni	ium ı	nitrate fertilizer
	11)		, ,	(V) acid required to m			
			ess ammonia. (3 ma	• /		ong (ammomum muut
		using CAC	oo ammoma. (5 ma	ino)			
6	Th.	maltina -	nd hailing mainta af	zina ara 410 ⁰ C and 00	70C magnastive-1-	, O	a of the oras of
6.		•	• •	zinc are 419°C and 90	•		
	zine	otenae. I	o extract zinc, the of	re is first roasted in air	before feeding	ii ini	io a furnace.

a.

- i) Write the formula of the main zinc compound in zinc blende. (1 mark)
- ii) Explain using an equation why it is necessary to roast the ore in air before introducing it into the furnace

(2 m a r k s)

b. The diagram below shows a simplified furnace used in the extraction of zinc. Study it and answer the questions that follows:

- i) Name **two** other substance that are also introduced into the furnace together with roasted ore. (1 mark)
- ii) The main reducing agent in the furnace is carbon(II) oxide. Write **two** equations showing how it is formed.

2

m a

r k iii) In which physical state is zinc at point ${\bf Y}$ in the furnace? Give a reason

(1 mark)

iv) Suggest a value for the temperature at point X in the furnace. Give a reason.

(1 mark

- v) State and explain **one** environmental effect that may arise from the extraction of zinc from zinc blende(2 mks)
- vi) Give two industrial uses of zinc.

(1 mark)

7. The figure below shows how the rate of the following reaction varies with the time.

$$A_{(g)} + B_{(g)} \qquad \qquad 2C_{(g)} \, + D_{(g)}$$

Rate of Curve II

reaction

Y

Curve I

X Time(minutes)

- i) Which of the two curves represent the rate of the reverse reaction? Give a reason (2 marks)
- ii) What is the significance of point X and Y on the figure?

(2 marks)

b) State and explain the effect of an increase in pressure on the rates of the following reactions.

$$\begin{array}{ccc} i) & H_{2(g)} + Cl_{2(g)} & 2HCl_{(g)} \\ & (2 \ marks) & \end{array}$$

ii)
$$CH_3OH_{(l)} + CH_3COOH_{(l)}$$
 $CH_3COOCH_{3(l)} + H_2O_{(l)}$ (2 marks)

c) In an experiment to study the rate of reaction between barium carbonate and dilute hydrochloric acid; 1.97g of barium carbonate were reacted with excess 2M hydrochloric acid. The equation for the reaction is

$$BaCO_{3(s)} + 2HCl_{(aq)} \qquad \qquad BaCl_{2(aq)} \ + \ CO_{2(g)} + H_2O_{(l)}$$

The data in the table was obtained

Time in seconds	0	30	60	90	120	150	180	210	240
Volume of gas (cm ³)	0	80	135	175	210	230	240	240	240

- i) On a grid plot a graph of volume of gas produced (vertical axis) against time (3 marks)
- ii) From the graph, determine the rate of the reaction at:
 - (I) 15 seconds

(1 mark)

(II) 120 seconds

(1 mark)

(III) Give a reason for the difference between the two values.

(1 mark)