KCSE 2022 PAPER 1

5.5 **CHEMISTRY (233)**

5.5.1 Chemistry Paper 1 (233/1)

No.		Responses					Marks
1.	(a)	Charge - Proton has positive charge while neutron has no charge. (1) OR Mass - Neutron is slightly heavier than a proton					1
	(b)	(i) 2.8.8 (1 r (ii) - Group - Period	mark) II (½)				2 3 marks
2.	(a)	Element	Sodium	Magnesium	Silicon	Phosphorus	
		Formula of chloride	NaCl	MgCl ₂	SiCl ₄	PCl ₃ PCl ₅	2
		Structure of chloride	Giant ionic	Giant ionic	Simple molecular	Simple molecular	
				correct formula			= 1/
	(b) $PCl_3(1) + 3H_2O(1) \rightarrow H_3PO_3(aq) + 3HCl(aq)$						= 10 (m)
		OR PCl ₅ (1) + 4H ₂	$O(1) \rightarrow H_3PO_4$	(aq) + 5HCl(aq	(1)		1
			$f_2O(1) \rightarrow SiO_2(S)$) + 4HCl(aq)			3 marks
3.	(a)		$g) \rightarrow CO(g); \Delta$		VOEO		1
	(b)		.110) = -290 kJ	(1)			2
							3 mark

No.		Responses	Marks
4.	(a) (b)	Both methods provide coating that keeps iron away from oxygen and water (1) In galvanizing zinc acts as a sacrificial (1) metal since it is more reactive	1
		than iron thus prevents rusting; in painting rusting will take place if the coat is broken. (1)	2
		TO OTOROM. (1)	3 marks
5.	(a)	(i) Decane (1)	
		(ii) C ₅ H ₁₁ (1)	2
	(b)	H H H H O H C C C C C C C C O C H H H H H H	
			1
		(1)	3 marks
6.		Condition I	
		Increase temperature $(\frac{1}{2})$. The forward reaction is endothermic.	
		Formation of $NO_2(\mathbf{g})$ is favoured by increase in temperature (1).	1½
		Condition II	
		Reduction in pressure ($\frac{1}{2}$). Forward reaction proceeds with increase in	
		number of molecules or pressure (1). Production of NO ₂ (g) is therefore	11/
		favoured by low pressure.	1½
			3 marks

No.		Responses	Marks
7.	(a)	(i) O.N of $CaH_2 = +2 + 2H = 0 (\frac{1}{2})$	
		2H = -2	
		O.No. of H = $-1 (\frac{1}{2})$	2
		(ii) O.No. of $\mathbf{OF}_2 = O + 2(-1)$ (½)	
		$O = +2 (\frac{1}{2})$	
	(b)	$CH_{3}COOH(aq) + HCO_{3}^{-}(aq) \rightarrow CH_{3}COO^{-}(aq) + CO_{2}(g) + H_{2}O(l) (1)$	1
		OR	3 marks
		$H^+(aq) + HCO_3^-(aq) \longrightarrow CO_2(g) + H_2O(l)$	
8.	(a)	(i) $9.33 \times 10^{-23} \times 6.0 \times 10^{23} (\frac{1}{2}) = 55.58$	
		$\approx 56 \mathrm{g} (^{1}/_{2})$	2
		(ii) $(CH)n = 56$	
		$13n = 56 (^{1}/_{2})$	
		n=4	1
		∴ MF = C_4H_8 ($^{1}/_{2}$)	
		OR	
		C_4H_8 (1)	
	(b)	H H H H I I I I H-C-C-C=C I I I H H H H (1)	
		OR	

No).	Responses	Marks	
	H H H H H-c-c=c-c-H H H H			
		OR		
		н нн—с—нн		
		HH-C-HH H-C-C=C-H		
		(Accept any correct isomer of C ₄ H ₈)		
9.	(a)	II O+	3 marks	
		(i) H ₃ O ⁺ (½) (iii) Dative bond /coordinate bond (½)	1	
	(b)	Iodine has larger molecular mass /bigger size (1) thus stronger Van der (1) Waals forces of attraction than chlorine which has small mass.	2	
			3 marks	
10.	(a) (b)	$2NH_4Br(s) + Ba(OH)_2(s) \rightarrow BaBr_2(aq) + 2NH_3(g) + 2H_2O(l)$ (1) Ammonia reacts with calcium chloride to form $CaCl_2 \bullet 2NH_3$ which is a	1	
		complex salt. (1)	1	
	(c)			
		CaO(s)/Calcium oxide (1)	1	
			3 marks	

No.		Responses			Marks		
11.	(a)	(i) Sample 1 (½)					
		(ii) Sample 4 (½)			11/2		
		(iii) Sample 2 / sample 5 ($\frac{1}{2}$)					
	(b)	Hard water is run (½) into a column c			11/2		
		Ca ²⁺ /Mg ²⁺ ions are exchanged for 1	$Na^+(1)$ ions. The	erefore, water coming	g		
		out from the column is soft.			3 marks		
12.	(a)	Position of the ion/element in the reac	ctivity series. (1)	1		
	(b)	Electrolyte	Anode	Cathode			
		Dilute calcium chloride	Oxygen (½)	Hydrogen (½)			
		Concentrated calcium chloride	Chloride (½)	Hydrogen (½)	2		
		(Accept correct form	ula of the prod	uct) (2)	3 marks		
13.	(a)	Carbon exists in different (1/2) crystalline forms/allotropes i.e diamond and					
		graphite in the same physical state, h	ence different bo	oiling points because	1		
		of the different structures. (1/2)					
	(b)	$\frac{\text{Time of effusion of } \text{Cl}_2}{\text{Time of effusion of } \text{NO}_2} = \sqrt{\frac{\text{RMM of } \text{Cl}_2}{\text{RMM of } \text{NO}_2}}$					
		Time of diffusion of $Cl_2 = 44 \times \sqrt{\frac{1}{1}}$	RMM of Cl ₂ (¹/RMM of NO ₂	2)			
		$RMM(NO_2) = 46 (\frac{1}{2})$			2		
		$RMM(Cl2) = 71 (\frac{1}{2})$					
		Time taken by (NO ₂)44 Sec.					
		Time taken by $(Cl_2) = 44 \times \sqrt{\frac{71}{46}} = 5$	54.66 S (¹ / ₂)		3 marks		
14.	(a)	(i) Cotton/sisal/(½)/ sisal/banan	a fibre				
		(ii) Rubber (½)			1		

No.		Responses	M
	(b)	(i) H H C = C H COOCH ₃ (iii) Transparent (½); strong (½)	Marks 2 3 marks
15.	(a)	Diamond has tetrahedral structure with all atoms forming four strong covalent bonds while in graphite each atom forms three covalent bonds in a (1) layer structure which are far from each other. The layers are held together by weak Van der Waals. OR Graphite has a large volume than diamond hence less dense for equal masses.	1
	b)	(i) Graphite Use: Lubricant/pencil leads (½) Electrode Property: Soft and slippery (½) Conductor of electricity (ii) Diamond Use: Tips of drilling bits (½) Jewel Property: Hard and abrasive (½)	2
		Shiny lustre	3 marks

No.		Responses				Marks
	(b) A has a shorter half-life than B ($^{1}/_{2}$). It will clear from the body faster thus not expose the patient to radiations for a long time ($^{1}/_{2}$).					
17.		$\frac{55}{\text{RFM}} \times 100 = 2.5$ RFM = $\frac{55}{24.7} \times 100$ RFM = $\frac{222.7}{24.7} \times 100$ RFM of MnSO ₄ $\therefore 151 + 18x = 22$ $18 \times = 71.7$ $\times = 3.98$ $= 4(1)$ RFM MnSO ₄ = 100 % RFM No. of moles Mole ratio	000 = 151 (1) 2.7			3 marks
18.	1	nouth facing awa	y; (½) heat from	the top (½) downwa	lanting (1) with the ards and not from the thdrawing from time	3
						3 marks

No.		Responses			Marks	
21.	(a)	(a) Fractional distillation. (½) Put the two liquids in a fractionating column; heat the mixture gently; hexane will distill at 68.7°C (1) leaving butanol as the residue.				
	(b) Separating funnel (½) These are immiscible liquids; hexane will float on water; drain (1) the water from the bottom of the flask. Hexane remains in the funnel				1½ 3 marks	
22.		Ions present	Aqueous ammonia	Aqueous sodium sulphate		
		Ca ²⁺	White precipitate (½)	White precipitate (½)	1	
		A1 ³⁺	White precipitate (½)	No white precipitate (½)	I	
		Fe ²⁺	Green precipitate (½)	No green precipitate (½)	1	
					3 marks	
23.	(a)	They react with calcium oxide (1) to form CaSiO ₃ (½) and CaAl ₂ O ₄ (½)				
	(b)	which are remov	ved as slag. correct equation for fo	rmation of slag)	-	
		The waste gases	are at high temperature	The heat can be recycled to	1	
		pre-heat the incoming air/ CO is recycled to reduce iron ore. (1)			3 marks	
24.	(a)			ere is a strong smell due to (1)	1	
		presence of chlo	rine molecules / equilibr	rium lies to the left.		
	(1.)	4.1111				
	(b) Addition of NaOH neutralizes (1) HCl(aq) and HOCl(aq); equilibrium					
			t/ chlorine molecules are	e consumed (1) hence the smell	2	
		disappears.			3 marks	
25.	(a)	Chamber I (1)				
	(b)	Nitrogen(II) oxid	de (NO) (1)			
	(c)		$) \rightarrow 2HNO_3(aq) + NO(g)$	(1)	3	
)R	(-)		
			l) →HNO ₃ (l) + HNO	O ₂ (1)	3 marks	

No.		Responses		Marks
26.		Oxidation state of zinc is +2 OH ⁻ has a charge of -1 $\therefore +2 + (-1 \times 4) = x$ $\Rightarrow x = -2$	- Get oxidation No. of Zn (½) - Oxidation No. of OH (½) - Multiply oxidation No. by 4 - Sum up and equate to x (½)	2 2marks
27.	(a)	Hydrogen/ Ammonia/methane g	as (1)	
	(b)	$CuO(s) + CO(g) \rightarrow Cu(s) + CO_2(g)$	g)	
		Moles CO = moles Cu = $\frac{200 \text{ dm}}{24 \text{ dm}^3}$	3 3	
		Mass $Cu = \frac{200}{24} \times 63.5 = 529.2 \text{ g}$		3
		OR		
		No. of moles of $CO = No.$ of mo	oles of Cu (1/2)	
		No. of Cu = $\frac{200}{24}$ = 8.333 ($^{1}/_{2}$)		
		Mass of $Cu = \frac{200}{24} \times 63.5 (^{1}/_{2})$		
		$= 529.2 g (^{1}/_{2})$		
				3 marks