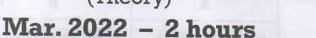
THE KENYA NATIONAL EXAMINATIONS COUNCIL **Kenya Certificate of Secondary Education**

233/2


736

200

(Theory)

CE 2021 KCSE 2021 KCS

Paper 2

Name Index Number

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided in the question paper.
- (d) Non-programmable silent electronic calculators and KNEC mathematical tables may be used.
- (e) All working must be clearly shown where necessary.
- (f) This paper consists of 16 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

Question	Maximum Score	Candidate's Score
- 1	11	
2	11	and the second second
3	11	
4	11	No.
5	13	The states
6	11	and the section
7	12	and the second
Total Score	80	IZOZ JSOJI IZ

© 2021 The Kenya National Examinations Council 233/2

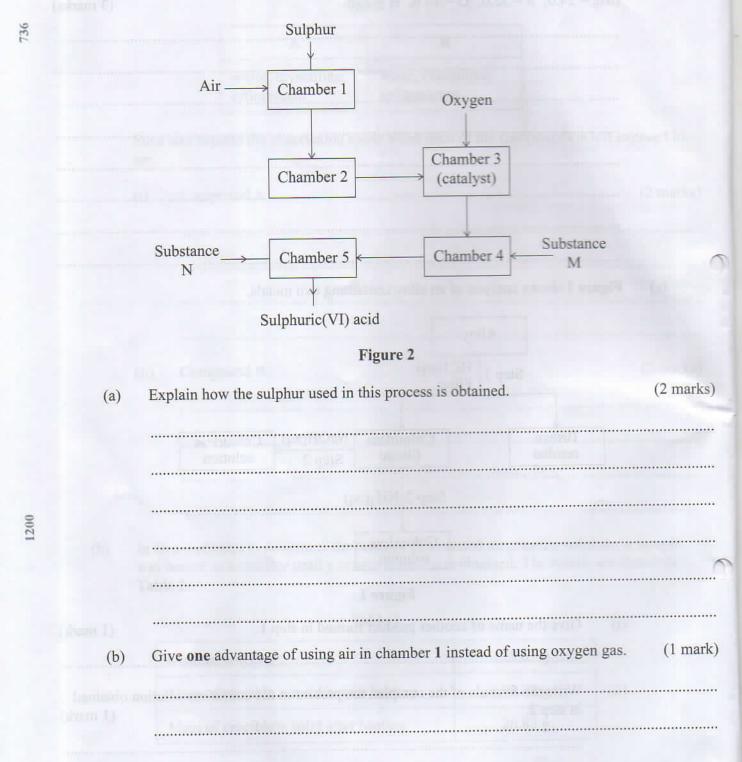
18	ible 1
A	В
white, crystalline, efflorescent	white, crystalline, deliquescent

2

State and explain the observation made when each of the compounds is left exposed in air:

- (b) In an experiment to determine the formula of hydrated magnesium sulphate, a sample was heated in a crucible until a constant mass was obtained. The results are shown in **Table 2.**

-	10.11		1
10	h	0	J
1 21	D	IC.	4


Mass of crucible	25.62 g
Mass of crucible + solid before heating	28.08 g
Mass of crucible + solid after heating	26.82 g

(a)

3

(Mg	= 24.0; $S = 32.0$; $O = 16.0$; $H = 1.0$).	(3 marl
	Selving	
	Atr Chamber 1	
	Chamber 2 (calabal)	••••••
		do2
Figu	re 1 shows analysis of an alloy containing two metals.	
	Bernikan telapi bigat kengerantra in di maradi for the zoardo	
	Alloy	
	Step 1 HC1(aq)	
	Filter	
	Brown Colourless NaOH(aq) Colourless	Lin di transferi
	Brown residueColourlessNaOH(aq)ColourlessfiltrateStep 2solution	CI mase
	Char 2 NIL ()	and the second s
	Step 3 NH ₃ (aq)	
	Colourless	
	solution	
	Figure 1	
(i)	Give the name of another product formed in step 1.	(1 marl
(ii)		
(11)	Write the formula of the complex ion present in the colourless in step 2.	solution obtained (1 mark
	Contacts particular	
(iii)	Identify the metals in the alloy.	(2 marks
	Kenya Certificate of Secondary Education, 2021	
	233/2	Turn ove

2. The flow chart in Figure 2 shows the processes involved in the manufacture of sulphuric(VI) acid.

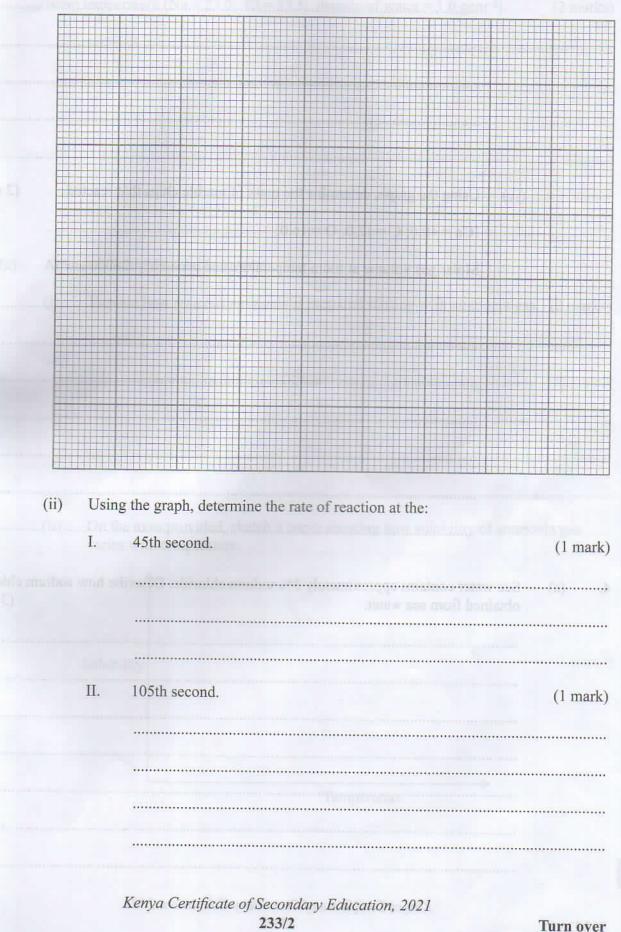
Kenya Certificate of Secondary Education, 2021 233/2

(c) Identify substances:	
(i) M	(1 mark)
(ii) N	(1 mark)
(d) (i) In chamber 2, drying and purification necessary.	ake place. Give a reason why this is (1 mark)
(ii) The reaction in chamber 3 is highly ex	othermic.
I. Explain why high temperature	s required for the reaction in chamber 3. (1 mark)
II. State how the heat produced in	chamber 3 can be utilised in this process. (1 mark)
(e) Give a reason why this method of manufactur	e is known as ' <i>contact process</i> '. (1 mark)
(f) Emission of gases in the sulphuric(VI) acid pla	ant may lead to environmental pollution.
(i) State the evidence that could be used to	second if another the second if the
causes pollution.	(1 mark)
045 316	
60 00 00 <u>00 00 00 00 00 00</u>	

Kenya Certificate of Secondary Education, 2021 233/2 6

		(ii) Explain how the pollution identified in 2(f)(i) can be controlled.	(1 mark)
3.	(a)	Chemical reactions occur as a result of collisions of particles. Give a reason we collisions are effective.	hy not all (1 mark)
	(b)	State and explain how the following factors affect the rate of reaction:	
		(i) Surface area of reactants.	(1 mark)
		(ii) Pressure.	(1 mark)
			6
	(c)	In an experiment to determine the rate of a reaction, marble chips were added 2M hydrochloric acid. The equation for the reaction is:	to excess

 $CaCO_3(s) + 2HC1(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$


The volume of carbon(IV) oxide produced was measured at 25 °C and recorded after every 30 seconds. **Table 3** shows the results obtained.

Time (seconds)	0	30	60	90	120	150	180	210	240
Volume of CO ₂ (cm ³)	0	62	92	113	124	130	132	133	133

Table 3

Kenya Certificate of Secondary Education, 2021 233/2

(i) On the grid provided, plot a graph of volume of carbon(IV) oxide (vertical axis) against time (horizontal axis). (3 marks)

(iii) Give a reason for the differences in the two rates. (1 mark) Using the graph, determine the mass of marble chips that reacted (2 marks) (iv) (Ca = 40.0; C = 12.0; O = 16.0;Molar gas volume at room temperature and pressure = 24000 cm³). ------..... Sea water contains approximately 3% sodium chloride. Describe how sodium chloride is (a) (3 marks) obtained from sea water.

Kenya Certificate of Secondary Education, 2021 233/2

4.

業会

		(b)	Dete	blubility of sodium chloride is 36.2 nine the concentration in moles pettemperature (Na = 23.0 ; Cl = 35.5	r litre of a saturated aqueous	sodium chloride at	
							736
					ons get into sources of v me	sed)	
			•••••			ohnan	
6		(c)	Amn	onia is highly soluble in water.			
0			(i)	Explain how aqueous ammonia is	prepared starting with amm	onia gas. (2 marks)	
				41 51		sta sia	
			(ii)	On the axes provided, sketch a cu varies with temperature.	rve showing how solubility of	of ammonia gas (1 mark)	1200
0				1			
				The following tons have Earning			
				Solubility			
				- THE REPORT OF THE REPORT OF			
					Temperature		
						(ii)-	
	913033	3		Kenya Certificate of Second 233/2	lary Education, 2021	Turn over	

	•••••••						
Water hard these ions	dness is due to the get into sources of	presence of ma of water.	gnesium	and calc	ium ion	s. Expl	ain how (2 m
		TRACTOR ALL AND AND A					
Figure 3 s	shows part of a Pe	eriodic Table.					
Figure 3 s	shows part of a Pe	eriodic Table.					Не
Figure 3 s	shows part of a Po	eriodic Table.		N	0	F	He Ne
	shows part of a Po	eriodic Table.	Si	N	0	F	
Be	shows part of a Po		Si	N	0		Ne
Be Mg	shows part of a Po		Si	N	0	C1	Ne
Be Mg Ca	shows part of a Pe		Si	N	0	Cl Br	Ne
Be Mg Ca	shows part of a Po		Si	N	0	Cl Br	Ne
	Water hard these ions	Water hardness is due to the these ions get into sources o	Water hardness is due to the presence of mag these ions get into sources of water.	Water hardness is due to the presence of magnesium these ions get into sources of water.	Water hardness is due to the presence of magnesium and calc these ions get into sources of water.	Water hardness is due to the presence of magnesium and calcium ion these ions get into sources of water.	Water hardness is due to the presence of magnesium and calcium ions. Expl these ions get into sources of water.

..... (1 mark) Select an element with the highest first ionisation energy.

 $(\frac{1}{2} \text{ mark})$

Kenya Certificate of Secondary Education, 2021 233/2

ROW THE

П.

(ii)

non-metal.

	(iii)	I.	Name the method used to obtain argon from its source.	(1 mark)
			Substance Substance	
		П.	Give one industrial use of argon.	
	(iv)	Expla	ain each of the following observations:	
		I.	The melting point of lithium is higher than that of potassium.	(1 mark)
		П.	The melting point of chlorine is lower than that of iodine.	(1 mark)
				(Creaka)
	(v)	The f	ollowing ions have the same number of electrons: N ³⁻ , Mg ²⁺ , O ²⁻	-, Na+
		Arran	ge them in order of increasing ionic size. Give a reason for the or	der. (2 marks)
			× 1	
			Kenya Certificate of Secondary Education, 2021	
913033			233/2	Turn over

12

(b) Use **Table 4** to answer the questions that follow.

-		£	100	
Ta	hi	0	1	
121			-	
	~ ~	-	-	

	Substance				
Property	H	I	J	K	
1 (1):	993	113	-38.9	-85	
Melting point (°C)	1695	183	357	-60	
Boiling point (°C) Electrical conductivity at room temperature	Does not conduct	conduct	Conducts	conduct	
Electrical conductivity in molten state	Conducts	Does not conduct	Conducts	Does not conduct	

(i) Identify the substance which is a gas at room temperature.

Give a reason.

		The mainteen state of the second second second second		
ii)	Name	the particles responsible for electrical conductivity in substance:		
	I.	Н	(1 mark)	1200
		T	(1 mark)	0
	П.	J		
(iii)	Iden	tify the type of forces that hold the particles together in:		
()			(1 mark)	
	I.	H		
	Ш	K	(1 mark)	
	II.	IX.		

Kenya Certificate of Secondary Education, 2021 233/2

.....

......

736

(1 mark)

6. Figure 4 shows a flow chart involving reactions of some organic compounds.

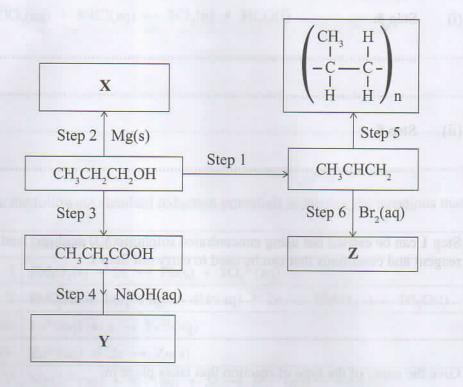


Figure 4

(a) Write the formula and give the names of compounds:

(i) **X**

	Name	Formula	(2 marks)
			 •••••
(ii)	Y		
	Name	Formula	(2 marks)

0

1200

Kenya Certificate of Secondary Education, 2021 233/2

Turn over

(b)	(b) Give the reagents and conditions necessary for carrying out:			
	(i)	Step 3.	(1 mark)	
	(ii)	Step 5.	(1 mark)	
(c)		1 can be carried out using concentrated sulphuric(VI) acid and heat. ent and conditions that can be used to carry out Step 1.	Name another (1 mark)	
(d)	Give	the name of the type of reaction that takes place in:		
	(i)	Step 1.	(1 mark)	
	(ii)	Step 5.	(1 mark)	
(e)	(i)	Write an equation for the reaction in step 6.	(1 mark)	
	(ii)	State the observations made in step 6.	(1 mark)	

15

(a) Using the oxidation numbers of chlorine, explain why the following is a redox reaction.

 $\mathrm{HClO}_3(\mathrm{aq}) \ + \ 5\mathrm{HCl}(\mathrm{aq}) \ \rightarrow \ 3\mathrm{Cl}_2(\mathrm{g}) \ + \ 3\mathrm{H}_2\mathrm{O}(\mathrm{l})$ (2 marks)

(b) Use the following standard reduction potentials to answer the questions that follow:

	Half cell reactions	E ⁰ /V
I	$PbSO_4(s) + 2e \rightarrow Pb(s) + SO_4^{2-}(aq)$	-0.36
II	$PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e \rightarrow PbSO_4(s) + 2H_2O(l)$	+1.69
Ш	$Fe^{3+}(aq) + e \rightarrow Fe^{2+}(aq)$	+0.77
IV	$Zn^{2+}(aq) + 2e \rightarrow Zn(s)$	-0.76
V	$MnO_4^{2-}(aq) + 8H^+(aq) + 5e \rightarrow Mn^{2+}(aq) + 4H_2O(1)$	+1.51
VI	$O_2(g) + 2H^+(aq) + 2e \rightarrow H_2O_2(aq)$	+0.68
VII	$Fe^{2+}(aq) + 2e \rightarrow Fe(s)$	-0.44
VIII	$Cu^{2+}(aq) + 2e \rightarrow Cu(s)$	+0.34

(i) The half cells I and II are combined to form an electrochemical cell.

I.	Write an equation for the cell reaction.	(1 mark)
II.	Calculate the e.m.f of the cell.	
11.	Calculate the e.m.i of the cell.	(1 mark)

Kenya Certificate of Secondary Education, 2021 233/2

Turn over

7.

16

736

(ii) Draw a labelled diagram for the electrochemical cell formed using half cells (3 marks) III and IV.

(iii)

State and explain the observations made when a few drops of acidified potassium manganate(VII) are added to hydrogen peroxide. (3 marks) _____

Coating iron with zinc is a more effective way of corrosion prevention than (iv) (2 marks) coating it with copper. Explain.

.....

.....

.....

THIS IS THE LAST PRINTED PAGE.

Kenya Certificate of Secondary Education, 2021 233/2

16 (ii) Draw a labelled diagram for the electrochemical cell formed using half cells (3 marks) III and IV. State and explain the observations made when a few drops of acidified potassium (3 marks) manganate(VII) are added to hydrogen peroxide. (iii) Coating iron with zinc is a more effective way of corrosion prevention than (2 marks) (iv) coating it with copper. Explain. 1200

736

THIS IS THE LAST PRINTED PAGE.

Kenya Certificate of Secondary Education, 2021 233/2