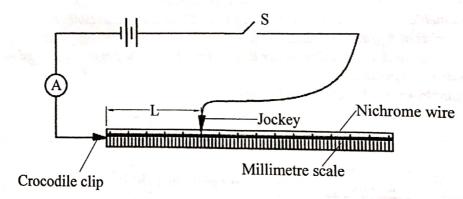
You are provided with the following:

- two cells in a cell holder;
- a switch;
- a micrometer screw gauge;
- a nichrome wire mounted on a millimetre scale;
- a voltmeter;
- an ammeter;
- a jockey;
- connecting wires with crocodile clips.


d=(2.7-3.1) × 10 allowed

Proceed as follows:

Using the micrometer screw gauge, measure and record the diameter d of the wire. $d = \dots mm$ $d = \dots$ (a)

(b)

Set up the apparatus as shown in Figure 1.

A133

613

Figure 1

Using the voltmeter, measure the potential difference E across the battery before closing the (c)

E=3.0-3.2 volts. (3.1 ± 0.1) 1 d.p a must whole number penalised.

Penalise 3 V

(d) Adjust the length L of the wire to 0.1 m (10 cm). Close the switch, read and record the value of the current I in Table 1.

Repeat (d) for the other values of L given in Table 1. Complete the table (e) (6 marks) Table 1 Length L (m) 0.1 0.2 0.3 0.4 0.5 0.42 Current I (A) ± 0.1 0.44 0.33 0.38

(f) On the grid provided; plot the graph of $\frac{1}{I}$ (y axis) against L.

0.43-0.63 910119 (D. 17-0.37)
Kenya Certificate of Secondary Education, 2020
232/3

Turn over

- Adjust the distance of the bulb from the lens to $U = 25 \,\mathrm{cm}$. Put on the switch and adjust the (b) position of the screen from the lens so that a sharp image of the bulb is observed. Record the distance V between the screen and the lens in Table 2.
- Repeat part (b) for the other values of U shown in Table 2. Complete the table. (c)

	Table	2	Lati (luii) t	-	tra 1
U cm	25	30	35	decrosing	rest.
V cm ± 10.0	45.0	35.0	30.0	I dep am	ust.
$M = \frac{V}{U}$ All values	Correct Correct	evalue evalue	estim	a skyptomic	form).
$F \equiv \frac{1}{M+1}$	4f or	exact (3dip ir	r stafers.	-

(d) Determine the average value of F.

- storming the average value	or r.			(Z marks)
prinaple o	e avergai	na fitt	2+621/1	5
		U))	3	mixik
Correct eva	luation to	4.Sr or	exact V	Iman.
	/ A		units	•••••••••••••••••••••••••••••••••••••••

PART B

Using the vernier callipers measure and record the diameters of the three pipes. d_A , d_B and d_C $d_A = 3.00 - 3.70$ $d_A = 3.00$ $d_A = 3.00 - 3.70$ $d_A = 3.00$ $d_A = 3.00$

 $d_C = \dots m$

Measure and record the thickness X of the half metre rule.

Measure and record the disconsistency X = 0.50 - 0.65 cm m $\sqrt{\frac{1}{2}}$ Correct Conversion of Student's Value.

da = 3.00 - 3.70cm

de = 3.60 - 4.90cm

de = 3.60 - 4.90cm

de = 45.10 - 5.80cm

Kenya Certificate of Secondary Education 2020

Kenya Certificate of Secondary Education, 2020 232/3

- Push one end of the balanced half metre rule slightly downwards and release it so that it oscillates (i) up and down. Measure and record in Table 3 the time for five complete oscillations.
- Repeat the procedure in (g), (h) and (i) for the other pipes B and C. Complete Table 3. (j)

nit for time not emphasised. (5 marks)

p unit po	Table 3		-
	Pipe A	Pipe B	Pipe C
Diameter d (m)			
Time for five oscillations ± 1-00	12.60 V	10.60	9.80 2
Periodic time T (s)	correct :	evaluation (exa	all correct.
$Z = T \sqrt{\frac{3(d-x)}{2}}$	d is in X must be Correct ex	metres e in metres aluation of any two	each & u Z (exactly correct value
Determine the average val	9.60-11.60	8.80	-10.80

(k) Determine the average value of a

11.60 -13.60 9.60 - 11.60 8.80 - 10.80 THIS IS THE LAST PRINTED PAGE.

910119 11.9135

Kenya Certificate of Secondary Education, 2020 232/3