KCSE 2022 PAPER 1

5.4 PHYSICS (232)

5.4.1 Physics Paper 1 (232/1)

SECTION A (25 MARKS)

1.	 (a) Area is a measure of the extent of a surface. (b) m² (metre squared) 	1
2.	The adhesive forces between water molecules and glass are higher $$ than cohesive forces $$ in water molecules.	2
3.	Remove air from the tube to create a partial vacuum / fill the tube with water, (\sqrt) the pressure difference \sqrt between the two ends makes the water to flow.	2
4.	The piece paper can be cut into tiny pieces.	1
5.	Increase in temperature causes the alcohol in P to expand pushing mercury up on the right side of the u tube. The mercury pushes index A up. $\sqrt{}$	2
6.	Heat is a form of energy while temperature is the degree of hotness.	2
7.	 Base area of the cylinder.√ The height of the position of the center of gravity above the base.√ 	2
8.	 With no mass on the hook, mark the pointer position on the graph paper as O g or 0 N mark.√ Suspend the 100 g mass on the hook and mark the pointer position on the graph paper as the 100 g or I N mark.√ Count the number of divisions between the 0 g mark and the 100 g mark, divide and label equal divisions accordingly / appropriately.√ 	3
9.	Volume inflow $= A_1 V_1$ Volume outflow $= A_2 V_2$ Since the water is incompressible. $$ Volume inflow $=$ Volume outflow. $$ $A_1 V_1 = A_2 V_2 $	3

SECTION B (55 MARKS)

14.	(a) The pressure of a fixed mass of a gas is inversely proportional to its volume provided the temperature is kept constant.	1
	(b) (i)	
	$\sqrt{l_2 > l_1}$ length of mercury thread $\sqrt{l_2 > l_1}$	2
	(ii) In 5 (a) the pressure on the air column is greater than the pressure	
	on the air pressure in 5 (b) hence $l_2 > l_1 \sqrt{1}$ Since in (a) pressure in air column = $P_{\text{(atmosphere)}} + \rho hg \sqrt{1}$	2
	While in (b) pressure on air column =P (atmosphere) (c) (i) Absolute zero temperature is the temperature at which the volume of	
	an ideal gas is assumed to be zero $\sqrt{}$	1
	(ii) $\frac{P1}{T1} = \frac{P2}{T2}$	3
	$\frac{6}{275} = \frac{P2}{353} \qquad \qquad \checkmark$	
	P_{2} 7.702 mmHg $\sqrt{}$	

15.	(a) - Reducing the speed of rotation.√ - Increasing the radius of the circular path.√	2
	(b) (i) $V = \omega r$	
	$=2\pi \mathrm{fr}$	3
	$= 2 \times 3.142 \times 2 \times 2 \qquad \qquad \sqrt{}$	
	$= 25.136 \text{ ms}^{-1}$	
	(ii) $T = \frac{mv^2}{r} - mg$	
	$=\frac{0.5\times25.136^2}{2}-5$	3
	= 152.955 N	
	= 153 N √	
	(iii) The tension increases √	
	At the bottom, the tension acts in the opposite direction as the	
	weight. √	2
16. (a)	(i) Upthrust = ρgV $\sqrt{}$	3
	$= 800 \times 10 \times 0.05^3 \sqrt{}$	
	= 1 N √	
	(ii) Apparent weight = W-upthrust $\sqrt{}$	
	= 20−1 √	3
	= 19 N	
	(iii) Sum of clockwise moments = Sum of anticlockwise moments	
	$x \times 0.5 = 19 \times 0.2 \qquad \qquad \sqrt{}$	
	$x = \frac{19 \times 0.2}{0.5} \qquad \qquad \checkmark$	3
	$= 7.6 N \qquad \qquad \sqrt{}$	
(b)	Weight of block = weight of water displaced	3
	$0.5 \times 10 = 1000 \times 10 \times V$ $\sqrt{}$	
	$V = \frac{0.5 \times 10}{1000 \times 10} \qquad $ $= 0.005 m^3 \qquad $	
	- 0.005 III	

17. (a)	- Impurities √	
17. (a)	- Atmospheric pressure √	2
(b)	(i) Boiling point is 104 °C.	1
	(ii) $Q = Pt$	3
	$= 80 \times 3.5 \times 60 \sqrt{}$	
	$= 16800 \mathrm{J}$	
	(i) $\Delta\Theta = 94 - 30 \sqrt{}$	1
	= 64°	
(c)	(ii) $Q = mc\Delta\Theta$	3
	$C = \frac{16800 J}{0.2 \times 64} \qquad \checkmark$	
	$= 1312.5 \text{ Jkg}^{-1} \text{ K}^{-1} $	
	$\Delta t = 6.3 - 5.4$	3
	= 0.9 minutes	
(d)	$=$ 54 seconds $\sqrt{}$	
	$L = \frac{Pt}{m} = \frac{54 \times 80}{0.002}$	
	$= 2.16 \times 10^6 \mathrm{J} kg^{-1} $	
18. (a)	(i) At uniform velocity, $W = mg - $	3
	$W = 80 \times 10 \qquad \qquad \sqrt{}$	
	$= 800 N \qquad \qquad \checkmark$	
	(ii) The reaction $R = w + ma$	
	$= (80 \times 10) + (80 \times 3)$	3
	= 1040 N √	
(b)	On attempting to jump the person exerts a backward force on the boat which $$ exerts an equal forward force on the person because of the low friction between the boat and water, the boat moves backwards $$ hence reduces the forward force on the person. $$	3
(c)	$W = F \times d \qquad \qquad $ $= 1000 \times 30$ $= 30000 J \qquad \qquad $	2