KCSE 2017

4.7.2 Chemistry Paper 2 (233/2)

Qn No.	Responses	Marks
1	(a) $ (i) C_n H_{2n} - alkyne_{\checkmark 1} $ $ (ii) C_n H_{2n} - alkene_{\checkmark 1} $	(1 mark)
	(b) (i) Solid because it is saturated. ✓1	(1 mark)
	(ii) I. CH ₂ OHCHOHCH ₂ OH ✓ 1	(1 mark)
	II. <i>CH</i> ₃ (<i>CH</i> ₂) ₁₆ <i>COONa</i> ✓ 1	(1 mark)
		(1 mark)
	III. Cleaning agent /.cleansing agent ✓ 1	
	(c) (i) Calcium carbide ✓ ½ and water. ✓ ½	(1 mark)
	 (ii) CaC_{2(s)} +H₂O_(s) → Ca(OH)_{2(aq)} +C₂H_{2(g)} ✓ 1 (d) (i) When many unsaturated molecules called monomers combine to form a giant / macro molecule of high relative molecular mass called a polymer. ✓ 1 	(1 mark)
	(ii) H CH3 H CH3 H CH8 COOCH3 H COOCH3 H COOCH5	(1 mark)
	 Used as a glass substitute; ✓ 1 Electronic instruments housing; Wind screen; Safety glasses; vehicle headlamps; Bullet proofing. 	(1 mark)

1
(1 mark)
(2 marks)
(2 marks)
(1½ marks)
(1 mark)
(½mark)
(½ mark)
(½mark)
(1 mark)

(ii) To prevent articles from rusting and to make them attractive.	
	(1 mark)
3 60 60 0 6	(1 11111)
(iv) Quantity of electricity = $\frac{3}{2}$ x 60 x 60 x 0.6 $\sqrt{1}$	
2240 1 1 4 1/4	
= 3240 coulombs. $\sqrt{\frac{1}{2}}$	
$108g Ag \equiv 96,500 \text{ coulombs}$	
? $\equiv 3240 \text{ coulombs}$	
SZ 10 COMICINIOS	
100 0010	
$=\frac{108 \times 3240}{1}$	
96,500	
$= 3.626g \frac{4}{2}$	
OR	
$0.6 \times 1.5 \times 60 \times 108$	
$=\frac{0.6\times1.5\times60\times108}{96,500}\checkmark2\frac{1}{2}$	
$= 3.626 \mathrm{g} \checkmark \frac{1}{2}$	(3 marks)
	(
3 (a) (i) To remove oxide layer on the metal. ✓ 1	
5 (a) (1) To remove oxide tayer on the metal.	(1 mark)
(ii) Beaker I:	
 Bubbles of a colourless gas / effervescence; ✓ 1 	
Solution turns green; ✓	(1 1)
	(1 mark)
 the size of iron rod decreases√. 	
Beaker II:	(1 mark)
The solution remained colourless. 1	(man)
No bubbles/effervescence	
110 Outolog offer rescence	
(iii) Beaker I:	
Iron is above hydrogen in the reactivity	
	(1 1)
Series therefore will react with the acid to form iron(II) sulphate ($FeSO_4$)	(1 mark)
which is green and produces hydrogen gas. ✓ 1	

_	т	7
	١.	

Iron is more reactive than hydrogen hence it reacts with sulphuric(VI) acid to produce hydrogen gas and iron(III) sulphate which is green.

Beaker II:

Copper is below hydrogen hence no reaction will take place. ✓ 1

(b) (i) To dry hydrogen gas. ✓ 1

(1 mark)

(ii) Calcium oxide /anhydrous calcium chloride /silica gel. ✓ 1

(1 mark)

(Accept the formulae) (Any one correct @ 1mk) (1 mark)

- (iii) To suck the products of the burning into the boiling tube. \checkmark 1
- (iv) Water ✓ 1

(1 mark)

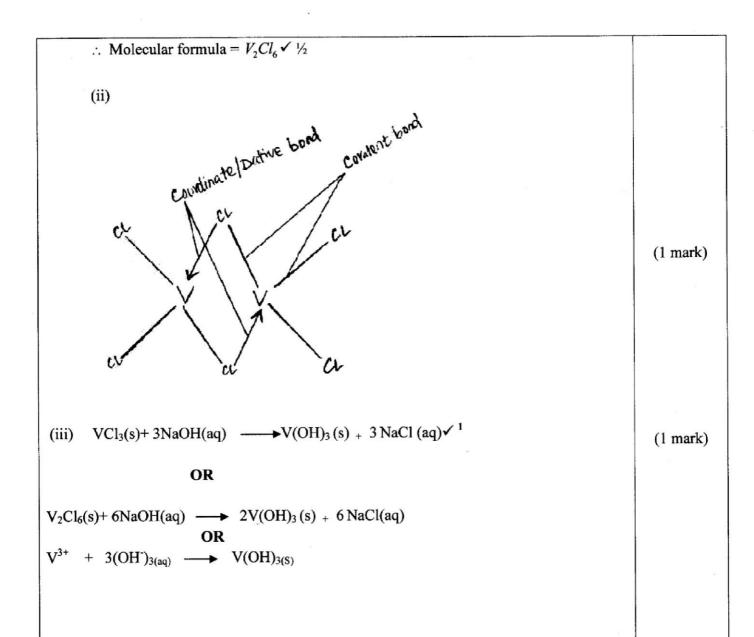
(v) Boil the liquid. If it boils at 100°C/ constant, then this confirms that it is water. ✓ 1

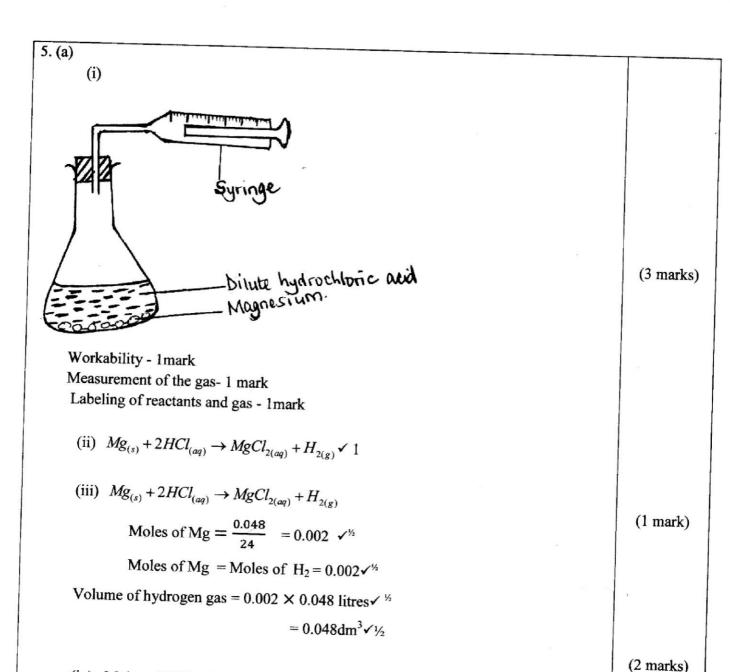
(1 mark) (1 mark)

OR

Freeze the liquid. If it freezes at 0°C, then this confirms that it is water \(\sqrt{/} \) Determine density of liquid, if it is $1g/cm^3$ then it is water.

(Accept any one correct @ 1mk)


(vi) Dry -The substance is free from moisture. ✓ 1

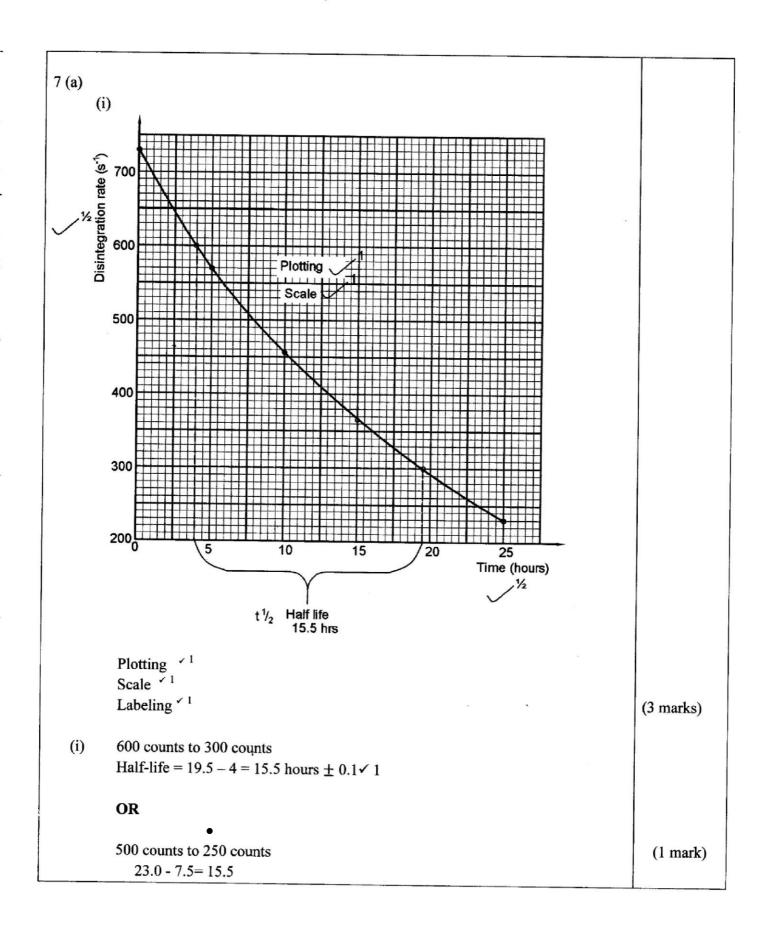

(2 marks)

Anhydrous - The substance has lost its water of crystallization through heating,

to form anhydrous substances. ✓ 1

4 (a) (i)	W is acidic. ✓1			
(ii)	Sulphuric(VI) ac	d H.SO. √1		(1 mark)
				(1 mark)
(iii)	(II) - Magnesiun	sulphate. ✓1		(1 mark)
	(III) - Sodium su	phate. ✓1		(1mark)
(iv)	$Ba^{2+}(aq) + SO$	$_{4}^{2-}(aq) \rightarrow BaSO_{4(s)} \checkmark 1$		(1 mark)
4. 4.				
(b) (i)			1	
(I)				*
	V	Cl		
Mass ((g) 19.75	80.25		
RAM	27	35.5		
Moles	19.75 27	$\frac{80.25}{35.5}$ $\sqrt{1/2}$		
÷ smal	$\frac{0.73}{0.73}$	$\frac{2.26}{0.73} \checkmark \frac{1}{2}$ $3 \checkmark \frac{1}{2}$		(2 marks)
Empiri	ical - VCl ₃ , ½	3 • 72		
(II)	Molar mass =	= 267		
()		$SS VCl_3 = 27 + 35.5 \times 3$		
		= 27+ 106.5		
		= 133.5 √ ½		
(Em	npirical mass) n =	molecular mass		
	133.3n = 267			
	$n = 267 \div 1$ $n = 2 \checkmark 1$	33.5		
	n − 2 •			
(VC	$(l_3)_2 = V_2 C l_6$			(2 marks)

(iv) Moles of HCl = $2 \times 0.002 \checkmark \frac{1}{2} = 0.004. \checkmark \frac{1}{2}$


$$\frac{\text{volume} \times 0.1}{1000} = 0.004 \checkmark \frac{1}{2}$$

Volume =
$$\frac{0.004x1000}{0.1} \checkmark \frac{1}{2}$$

= $4/0.1 = 40 \text{cm}^3 \checkmark 1$

(3 marks)

For more visit: eazyarabic.com

6. (a) Sulphur(IV) oxide \checkmark 1	(1 mark)
(b) Oxygen ✓ ¹and nitrogen(IV) oxide.✓ ¹	(2 marks)
(c) Lead(II) oxide/ PbO. ✓ 1	(1 mark)
(d) Lead. ✓ ¹	(1 mark)
(e) (i) Grey beads formed at cathode; ✓ 1	
Bubbles/ effervescence.of a colourless gas at the anode ✓ 1	(2 marks)
(ii) $2O^{2-}(1) \longrightarrow 2O_2(g) + 4e^{-\sqrt{1}}$	(1 mark)
(f) $Pb_{(aq)}^{2+} + 2I^{-}(aq) \to PbI_{2}(s)$. \checkmark 1	
(lag)	(1 mark)
(g) A white precipitate ✓ ½ was formed which dissolves in excess to form a	(1 mark)
colourless solution. ✓ ½	
(h) (i) Displacement / Redox reaction ✓ 1	(1 mark)
(ii) $Pb^{2+}(aq) + Zn(s) \to Pb(s) + Zn^{2+}(aq)$. \checkmark ¹	(1 mark)

(ii) It would have no effect on the curve as the quantity of bismuth does not affect	(1 mark)	
half-life. ✓ 1	(1 mark)	
(b) (i) Applications in medicine		
Sterilizing surgical instruments.		
 Destroying cancerous tissues during ✓ 1 		
radiotherapy.		
Provide power to the heart pace setters.	(1 mark)	
(Any one correct @ 1mk)	(1 mark)	
(ii) Applications in agriculture		
Monitor photosynthesis and other related processes.		
• Preservation of foodstuffs, by exposing ✓1		
Micro-organisms to gamma rays.		
Rate of absorption of a fertilizer by the plant.	(1 mark)	
(Any one correct @ 1mk)	(1 mark)	
(iii)Applications in Tracers		
 Detecting leakages in underground water or oil pipes. ✓ 1 	(1 mark)	
	V** ***	
(iv)Applications in Nuclear power stations.	(1 mark)	
• To generate electricity. ✓ 1		
(d) Dangers of radioactivity		
 Long term exposure causes genetic mutation; ✓ 1 		
• Radioisotopes can be used as weapon of mass ✓ 1		
Destruction;		
Causes skin cancer;		
When tested causes environmental pollution.		
(Any 2 correct @ 1mk)		