KCSE 2022 PAPER 2

5.4.2 Physics Paper 2 (232/2)

SECTION A: (25 marks)

1.	The eye does not $\sqrt{\ }$ see the light since the holes are not $\sqrt{\ }$ in a straight line.	(2 marks)
2.	The cloth loses some electrons $$ to the polythene rod gains electrons from the clothe.	(1 mark)
3.	 Crystal detectors - Aerial receiver Solid state diodes - Radio receiver (any one) 	(1 mark)
4.		(1 mark)
-		
5.	Like poles repel while unlike poles attract. √	(1 mark)
6.		(3 marks)

7.	 Gives a stronger magnet (High concentration of magnetic flux). √ Easily demagnetized/ magnetized. √ 	(2 marks)
8.	(a) Air pressure/ density is higher √ at sea level than on high	(1 mark)
	mountain.	
	(b) - The waves should have the same amplitude	
	- The waves should be out of phase	(1 mark)
	- Moving in opposite directions	
	(any one)	
9.	$S = \frac{d}{t} \sqrt{}$	(3 marks)
	$=\frac{2\times300}{1.8}\;\checkmark$	
	= 333.3 m/s	
	= 333.3 m/s v	
10.	(a)	(1 mark)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Sin i	
	Sin r	
	(b) By obtaining the gradient of the graph	(1 mark)
	$n = \frac{\Delta \sin i}{\Delta \sin i} \sqrt{1 + \frac{\Delta \sin i}{\Delta \sin i}}$	
	$n = \frac{1}{\Delta \sin r}$	
11.	Same current flows $\sqrt{\text{through the resistors but given that V}} = IR$, the	
11.	higher the resistance, the higher the voltage. $\sqrt{}$	(2 marks)
12		
12.	$P = \frac{V^2}{R} $	
	에 보고 있는데 아들이 있었다. 그런 사람들이 얼마를 보고 있는데 그렇게 되는데 그렇게 되었다. 그렇게 되었다면 그렇게 그렇게 되었다면 그렇게 그렇게 되었다면 그렇게	
	$=\frac{240^2}{3000}$ \checkmark	
	$=\frac{1}{3000}$ V	
	$= 19.2 \Omega $	(3 marks)
13.	Upright √	(2 marks)
13.	- Virtual √	
	- Diminished	
	Always between lens and principal focus (any two)	

SECTION B: 55 Marks

14.	(a) The direction of the induced current is such that it opposes the change producing it. $\sqrt{}$	(1mark)
	(b) (i) Galvanometer deflects √ momentarily.	(1mark)
	(ii) There is no deflection √	(1mark)
	(iii) Galvanometer deflects in the opposite direction. √	(1mark)
	(c) More deflection √ due to more induced current √ because of the	(3 marks)
	higher rate of change of flux) √	
	(d) - Hysteresis √	(2 marks)
	- Eddy currents √	
	- Heating effect/ copper losses	
1.5	- Flux leakage (any two)	
15.	(a) Supplies current √ to the sockets.	(1 mark)
	(b) (i) - S_1 is connected $$ to the neutral	444
	- S ₃ is not necessary √	
	- L ₂ and L ₃ are in series	(2 marks)
	 (ii) - Switch S₁ should be √ in live wire (Lamp is still live even with the switch open) 	(2 marks)
	- S ₃ will short √ circuit the mains supply.	
	- L ₂ and L ₃ should be connected in parallel.	
	(iii) L_1 is brighter than $\sqrt{L_2}$ and L_3	(2 marks)
	L_2 and L_3 have same $\sqrt{\text{brightness}}$	(2 marks)
	(iv) L_1 is on full $\sqrt{\text{voltage from the mains while L}_2}$ and L_3 share	(2 marks)
	the voltage from $$ the mains.	

16.	(a) (i) - UV dislodges electrons from plate B √.	(3 marks)
10.	- Electrons are attracted to plate A connected √ to the	
	positive terminal of the cell.	
	- This causes the current to flow hence √ deflection	
	 (ii) - Galvanometer √ deflects more since more electrons are dislodged from plate B hence √ more current flows. 	(2 marks)
	(b) (i) - Increasing the √ heater current this increases the production √ of electrons hence more x-rays.	(2 marks)
	(ii) (I) $\lambda = 1 \times 2 = 2 \text{ cm } \sqrt{}$	(1mark)
	(II) $f = \frac{1}{T} = \frac{1}{(8.5 \times 10^{-3} \times 2)} $	(3 marks)
	= 58.82 Hz √	
	(iii) (I) Grid: - Controls the √ number of electrons reaching the screen.	(1 mark)
	- Controls brightness of the spot on the screen.	
	(II) Filament: - Heats the √ cathode to produce electrons.	(1mark)
17.	(a) - Burning of skin √	(1 mark)
	- Causes of cancer (any one)	
	(b) (i) Half life is 4.5 s	(1mark)
	(ii) 3 half lives (show working on graph)	(2 marks)
	(c) (i) Improves the conductivity of the semi conductor	(1mark)
	(ii) Doping an intrinsic √ semiconductor with atoms of group V elements, four electrons will bond with the four √ electrons of intrinsic semiconductor. The remaining √ electron is donated for conduction.	(3 marks)
	 (iii) - Both G₁ and G₂ √ deflect but G₂ has a greater deflection than G₁ √ - D₂ is reverse biased while D₁ is forward √ biased hence conducts some of the main current √ but G₂ carries the total current. 	(4 marks)

18.	(a) - Resistance √ decreases with increase in the applied voltage	(2 marks)
	because the size of the depletion layer reduces √ allowing more	
	current to flow.	
	(b) (i) - Initially the lamp does not light √ but when bright light falls	(3 marks)
	on the LDR, the lamp lights.√	
	- When light falls on LDR, its resistance decreases hence	
	current flows causing √ the lamp to light.	
	(") P 1000 500 2500 0 1	(0. 1.)
	(ii) $R_T = 1000 + 500 = 2500 \Omega $	(3 marks)
	$I_{\rm T} = \frac{V_{\rm T}}{R_{\rm T}} = \frac{12}{2500} = 4.8 \times 10^{-3} {\rm A} \sqrt{2}$	
	$R_{\rm T}$ 2500	
	V = IR	
	$= 1500 \times 4.8 \times 10^{-3}$	
	= 7.2 V √	
	(c) Smoothens the output signal √	(1 mark)
	(d) $Q = CV $	(3 marks)
	$=\frac{10\times2.5}{10+2.5}\times12\ $	
	$\frac{10+2.5}{10}$	
	= 24 μC √	