For more visit: eazyarabic.com

LCSEREVISION. COM

5.0 THE YEAR 2019 KCSE EXAMINATION MARKING SCHEMES

5.1 MATHEMATICS ALTERNATIVE A (121)

5.1.1 Mathematics Alternative A Paper 1 (121/1)

No.	Marking Scheme	Marks	Comments
1.	$\frac{5.4}{0.025 \times 3.6} = \frac{5.4 \times 10^4}{0.025 \times 3.6 \times 10^4}$ $= \frac{54 \times 1000}{25 \times 36}$ $= \frac{6000}{100}$ $= 60$	M1 M1 A1 3	Removal of decimals or equivalent Simplification
2.	$1728 = 2^6 \times 3^3$	BI	
	$2025 = 3^4 \times 5^2$	B1	
	$\frac{\sqrt[3]{1728}}{\sqrt{2025}} = \frac{\sqrt[3]{2^6 \times 3^3}}{\sqrt{3^4 \times 5^2}} = \frac{2^2 \times 3}{3^2 \times 5}$	M1	✓ removal of cube root and square root
	$=\frac{4}{15}$ or 0.26	A1	
	$-\frac{15}{15}$ or 0.26	4	
3.	Time taken = 10.15 8.30 1.45	M1	Process of time difference
	$= 1 \text{ hr } 45 \text{ mins} = 1.75 \text{hrs} = 1\frac{3}{4}$ $\text{Speed} = \frac{140}{1.75}$	MI	
	= 80 km/h	A1 3	
4.	4(q+6)+7(q-3) = 4q+24+7q-21	Ml	The second second
	= 11q + 3	A1	
		2	

No.	Marking Scheme	Marks	Comments
No. 5.	Area of trapezium = $\frac{1}{2}(8 + 6)h = 28$	M1	
	7h = 28		
	h = 4cm	Al	
		2	
6.	$\sqrt[3]{9^4} = 3^n$		
	$\sqrt[3]{9^4} = 3^n$ $(3^2)^{4/3} = 3^n$	M1	Base 3 (both sides)
	$3^{\frac{8}{3}}=3^n$	Ml	
	$n = \frac{8}{3} = 2\frac{2}{3}$	Al	
		4	
	7.5 cm 5.3 cm A 295°	C BI	Location of B Location of C
	(b) AC = 3.5 cm ± 0.1	B1	
	$AC = (35 \pm 1)km$	B1 4	for
8.	$ 40 = 2 \times 2 \times 2 \times 5 250 = 2 \times 5 \times 5 \times 5 350 = 2 \times 5 \times 5 \times 7 $	M1	Allow any method of finding LCM
	$LCM = 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 7$	M1 A1	
	=7000g	3	

No.	Marking Scheme	Marks	Comments
9.	$\sin 2x = \cos(3x - 10)$		
	2x+(3x-10)=90	M1	Or equivalent
	5x = 100		
	x = 20°	Al	
		Bl	
	$\tan 20^\circ = 0.3640$	3	
10.	\$5820 = Ksh (5820×102.10)	M1	
	= Ksh 594222		
	Balance in \$		
	= <u>594222 - 450000</u>	MI	
	103.0		
	= 144222		
	103	Al	
	= 1400 US Dollars	3	
		3	
11.	$a = 3 \binom{3}{2} - 2 \binom{2}{4}$	MI	
	$= \binom{9}{6} - \binom{4}{8}$		
	$= \begin{pmatrix} 5 \\ -2 \end{pmatrix}$	Al	
	$ \underline{a} = \sqrt{5^2 + \left(-2\right)^2}$	MI	
	= 5.39	Al	
		4	

No.	Marking Scheme	Marks	Comments
12.	\$	R	
	P Q	B1	Construction of 75° ✓ Locating point R
		B1	Complete Rhombus
	$PR = (9.5 \pm 0.1)cm$	B1 4	
13.	$2x-1 \le 3x+4$ $-5 \le x$ $3x+4 < 7-x$ $4x < 3$	B1	
	$x < \frac{3}{4}$ $-5 \le x < \frac{3}{4}$	B1 -	
		3	

KCSEREVISIONI. COM

No.	Marking Scheme	Marks	Comments
14.	$ \begin{pmatrix} 2 & 3 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} x & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 2x+6 & 11 \\ 4x+8 & 16 \end{pmatrix} $	M1	
	$\begin{vmatrix} 2x+6 & 11 \\ 4x+8 & 16 \end{vmatrix} = 0$		
	16(2x+6)-11(4x+8) = 0	M1	
	32x + 96 - 44x - 88 = 0		
	32x - 44x = 88 - 96		
	-12x = -8		
	$x = \frac{2}{3} = 0.6$	Al	
		3	
15.	A + B = 50	Ml	Alt
	60A + 56B = 2872		
	60A + 56(50-A) = 2872	M1	
	4A = 2872-2800		
	4A = 72		
	A = 18	A1	
		3	
16.	Time taken = 5 hours 40 min	M1	Or equivalent
	3 hours 40 min		
	40 min		
	9 hours 35min		
	Arrival time = 08.15 + 9 hrs 35 min	NO.	
		M1	
	= 1750 hours	Al	
		3	

No.	Marking Scheme	Marks	Comments
17.	(a) Volume of water required		
	$= 2.4 \times 2 \times (1.5 - 0.45) \mathrm{m}^3$	M1	Or equivalent
	$= 2.4 \times 2 \times 1.05 \mathrm{m}^2$		
	Amount of water in litres		100 500 100 500 8
	$= 2.4 \times 2 \times 1.05 \times 1000 \text{ litres}$	M1	
	= 5040 litres	A1	
	(b) (i)		
	Amount of water let in by 3h is = $10 \times 3 \times 60 = 1800$ litres		
	Amount of water drawn from the tank in 2h is $= 4 \times 120 = 480$ litres		
	Total amount of water in tank after 3h = 2160+1800-480	M1	
	= 3480 litres	Al	
	Height of water in tank is		
	3480		
	$= \frac{1000 \times 2 \times 2.4}{1000 \times 2 \times 2.4}$	M1	
	=0.725m	Al	
	(b)(ii)		
	Height of water to be filled	M1	
	= 1.5 - 0.725 = 0.775 m Time in hours taken to fill the tank is		
		4 2 1 3	
	$=3h+\left(\frac{2.4\times2\times0.775\times1000}{6\times60}\right)h$	MI	
	$=3h+10\frac{1}{3}h$		
	$= 13\frac{1}{3}h$ (or 13h 20min)	Al	
		10	

For more visit: eazyarabic.com

LCSEREVISION. COM

o. Marking Scheme	Mar	rks Comments
8. (a) Gradient		Comments
$=\frac{7-3}{5-3}$		
5-3	M	1
= 2		
Equation of L	Maria Indiana	
		Or equivalent
$\frac{y-3}{x-3}=2$	M	1
y=2x-3	Δ.1	
	A	
(b) (i) Gradient of L ₂		
$=-\frac{1}{2}$	BI	
Equation of L_2		
$\frac{y-3}{x+2} = -\frac{1}{2}$	MI	Or equivalent
$y-3=-\frac{1}{2}x-1$		
2		
$y = -\frac{1}{2}x + 2$	A1	
(b)(ii) When y=0		
$-\frac{1}{2}x + 2 = 0$		
2		
x = 4	B1	
The x intercept of L_2 is 4		
The meteopt of L ₂ is 4		
(c) At point of intersection of L ₁ and L ₂		
The second secon	M1	
$2x-3=-\frac{1}{2}x+2$		
$2\frac{1}{2}x=5$		
x=2	Ml	
When $x = 2$, $y = 2(2) - 3 = 1$		
Point of intersection is (2,1)	Al	
	- 10	
	10	

KCSEREVISIONI. COM

. N	Marking Scheme	Marks	Comments
20. (a			
. (4		M1	
	$\frac{AB}{8} = \frac{10}{20}$		
	$AB = \frac{1}{2} \times 8$		THE PERSON NAMED IN
		Al	
	= 4 cm	AI	
1	S AG FORE		
(6)	(i) AC = $\sqrt{16+16}$ cm	M1	
	$=\sqrt{32}$ cm		
	= 5.66 cm	Al	
	(ii) ⊥ height of pyramid		
	T		
	$= \sqrt{10^2 - \left(\frac{1}{2} \times 5.66\right)^2} = \sqrt{\left(10^2 - 2.66\right)^2}$	83 ²) M1	
	V (2) V		
	= 9.59 cm	Al	
6	c) Volume of VABCD		
100		MI	
	$= \frac{1}{3} \times 4 \times 4 \times 9.59$	IVII	
	$= 51.15 \mathrm{cm}^3$		
	Volume of VEFGH		
		100	2 050 1015
	$=\frac{1}{3}\times8\times8\times(2\times9.59)$	M1	$2 \times 9.59 = 19.18$
	= 409.17		
	Volume of frustum ABCDEFGH		
	= 409.17-51.15	M1	
	$= 358.02cm^3$	Al	
	= 330.02cm		
		10	

Marking	Scheme						Marks	Comments			
(a) 2+8+	10 + 6 + x = 1	2+x= 2	40				B1				
		= 180 —	189				B1 M1 for midpoint x				
(c) (i) Mea	Mid	nt	Freq	fx							
150 - 159	-		2	309	-		M1	for midpoint x			
160 - 169		-	8	1316			33445-0				
170 - 179	se been come		10	1745			M1	for fx			
180 - 189			12	2214							
190 - 199	194.	5	6	1167							
200 - 209	204.	5	2	409							
			40	7160							
(i) Mediar	an heigh	ht = -	179.5	189.5	199.5	209.5	M1 A1				
	-					1828-000-000	BI	From table or implied			
C.F	2	10	20	32	38	40	Bl				
Median Height = height of 20 th athlete = 179.5						M1 A1	Median = $169.5 - \left(\frac{40}{2} - 10}{10}\right)$ = 179.5				
				-							

KCSEREVISION. COM

No.	Marking Scheme	Marks	Comments
10.			- 10
22.	(a) Let \angle BDC = θ	M1	Follow thro Question
	$\frac{\sin \theta}{\sin \theta} = \frac{\sin 30^{\circ}}{\sin 30^{\circ}}$		
	5 4		
	$\sin \theta = \frac{5 \times \sin 30}{4} = 0.625$	Al	
	4	111	
	Acute $\theta = 38.68^{\circ}$		
	Obtuse $\theta = 141.32^{\circ}$	B1	
	Obtase o 141.52		
	(b) Length AD		
	Angle ABD = $180 - 38.68 \times 2$	M1	
	Angle ADD - 100 30.00 A		
	= 102.64		
	2 2 2 2 4 4 100 44		
	$AD^2 = 4^2 + 4^2 - 2 \times 4 \times 4 \cos 102.64$	M1	
	= 39		
	AD = 6.24m	Al	
	AD = 0.24m		
	(c) Length of DC \angle DBC = $180 - (30+141.32)$		
	Z DBC = 180-(301141.32)		
	= 8.68°		
	Using sine rule		
		MI	
	$\frac{\sin 8.68}{DC} = \frac{\sin 30}{4}$		the second second
	⇒	145,137 7 1 23	
	$DC = 8 \sin 8.68$	A1	
	= 1.21m		
	(d) Area of ABC		
		Ml	8.68° +102.64° =111.32
	$= \frac{1}{2} \times 4 \times 5 \sin(8.68 + 102.64)$		
	$=9.32 m^2$	Al	
	-7.3211		
		10	

KCSEREVISION, COM

	Marking Scheme		B 18 18 18		1	Tarks	Commen		
22	(a)								
23.	(a) x	0	200	400	600	800	1000	1200	
	Ordinates along AB	200	240	280	300	280	240	200	B1
	Ordinates along CD	400	500	580	600	580*	580	640	Bl
	(b) Area of piece of lan Area under curve Al = $\frac{1}{2} \times 200 \{ (200 + 200) \}$ = $100 (400 + 2680)$	В				M1	For ordin At $x = 80$ $580 \le y$ Use of di $-\frac{1}{2} \times 200 \{(200+46)$	0, accept √ ≤ 590 fferences	
	$= 308 000 \text{ m}^{2}$ Area under curve CI $= \frac{1}{2} \times 200 \{ (400 + 640) $ $= 100 (1040 + 5680)$ $= 672 000$)+580+6	600 + 580 +	- 580)}	Ml			
	Area of land ABCD = $672000 - 3$ = 364000 m^2 = $\frac{364000}{1000} \text{ ha}$	08000				Al			
	10000 = 36.4 ha		Bl						
(c	(c) Area using mid ordin = $400\{(500 + 600) + 600\}$	0)}	B1 M1	Mid ord	inates				
	$= 360000 \mathrm{m}^2$		A1						
	$= \frac{360000}{10000}$ $= 36 \text{ha}$					ВІ			
						-			

For more visit: eazyarabic.com SIDXI. COM

Vo.	Marking Scheme	Marks	Comments
24.	(a)(i) $y = x^3 + x^2 - x - 1$		
	$\frac{dy}{dx} = 3x^2 + 2x - 1$	M1	
	$3x^2 + 2x - 1 = 0$ at stationary point. (x + 1)(3x - 1) = 0	MI	
	$x = -1$ or $\frac{1}{3}$		
	$(-1,0)$ and $(\frac{1}{3},-1\frac{5}{27})$ (a)(ii) Nature of stationary points	Al	
	$\frac{d^2y}{dx^2} = 6x + 2$ $At x = -1$		
	$\frac{d^2y}{dx^2} = -6 + 2$		
	= -4 (Negative) $x = -1 is a maximum point.$	В1	
	$At x = \frac{1}{3},$		
	$\frac{d^2y}{dx^2} = \frac{6}{3} + 2$		
	$= 4$ At $x = \frac{1}{3}$ is a minimum point	В1	

No.	Marking Scheme	Marks	Comments
	(b) (i) at $x = 1$ $y = 0$		
	At x = 1		
	$\frac{dy}{dx} = 3(1) + 2(1) - 1 = 4$	B1	
	Equation of tangent		
	$\frac{y-0}{x-1}=4$	M1	
	y = 4x - 4	Al	
	(b) (ii) Let gradient of normal = m_2		
	$m_2 \times 4 = -1$		
	$m_2 = -\frac{1}{4}$		
	$\frac{y-0}{x-1}=-\frac{1}{4}$	MI	
	$y = -\frac{1}{4}x + \frac{1}{4}$	Al	
		10	

KCSEREVISION, COM