THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

232/1

Paper 1

PHYSICS - (Theory)

Mar. 2022 - 2 hours

Name	Index Number
Candidate's Signature	Date

Instructions to candidates 2021 ICSE 2021 Ro

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two sections; A and B.
- (d) Answer all the questions in sections A and B in the spaces provided.
- (e) All working must be clearly shown in the spaces provided in this booklet.
- (f) Non-programmable silent electronic calculators may be used.
- (g) This paper consists of 16 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Section	Questions	Maximum Score	Candidate's Score
A	1-14	25	
	15	10	e
	16	12	
В	17	11	3
45p	18	10	102 571
	02 3 19	12	18271 10
	Total Score	80 08	

Figure 1 shows part of the thimble scale of a screw gauge with 50 divisions.

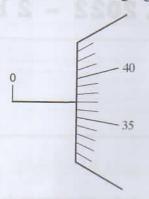


Figure 1

On the diagram, draw the sleeve scale to show a reading of 3.87 mm.

(1 mark

2. Figure 2 shows a siphon used to empty a tank.

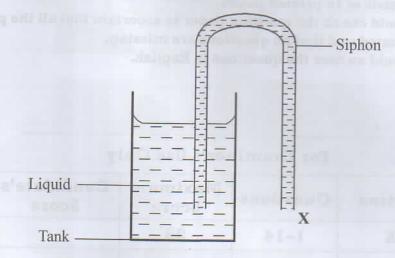


Figure 2

In order to start the siphon, state why:

(a)	it must be full of liquid.	(1 mark)
(b)	end X must be below the level of the liquid in the tank.	(1 mark)

A133

356

Kenya Certificate of Secondary Education, 2021 232/1 3. Figure 3(a) shows a horizontal tube containing air trapped by a mercury thread of length 5 cm. The length of the enclosed air column is 7.5 cm. The atmospheric pressure is 76 cmHg.

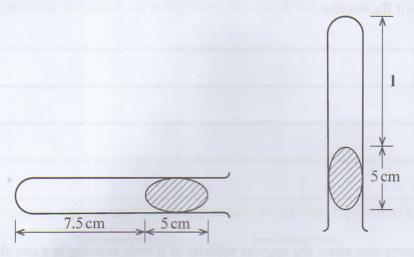


Figure 3(a)

Figure 3(b)

The tube is then turned vertically with its mouth facing down as shown in Figure 3(b).

(a) Determine the length I of the air column. (3 marks)

(b) State the reason why the mercury thread did not fall out in Figure 3(b). (1 mark)

4.	In a Physics experiment, a student filled a burette with water up to a level of 15 ml. The student ran out 3 drops of water each of volume 2 cm ³ from the burette into a beaker. Determine the final reading of the burette. (2 marks)
5.	State two factors that affect the angular velocity of a body moving in a circular path. (2 marks)
	Affiliang Columnia Serian Lances and serial place (Affilia Aleman and Maria and
	(a) The second of the second o

6. Figure 4 shows two capillary tubes X and Y of different diameters dipped in mercury.

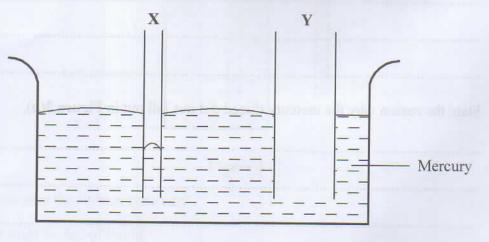
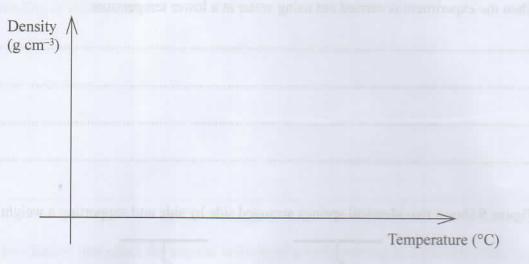


Figure 4

Complete the diagram to show the meniscus in Y.

(1 mark)



A133

	3
7.	In an experiment, a drop of black ink is introduced at the bottom of a container filled with water. It is observed that the water gradually turns black. State the effect on the observation when the experiment is carried out using water at a lower temperature. (1 mark)
8.	Figure 5 shows two identical springs arranged side by side and supporting a weight of 50 N.
)	
	50N
	Figure 5
	When the same weight is supported by one of the springs above, it produces an extension of 1 cm. Determine the effective spring constant of the arrangement in Figure 5. (3 marks)
	A entire agricultural

On the axes provided, sketch a graph of density against temperature for water between 0°C and 10 °C.

10. State the reason why a student climbing a hill tends to bend forward. (1 mark)

11. Figure 6 shows a graph of temperature against time for a pure molten substance undergoing cooling.

Figure 6

Explain what happens to the substance in region BC.	(2 marks)

12. Figure 7 shows a uniform rod AB 2 m long and of mass 1 kg. It is pivoted 0.5 m from end A and balanced horizontally by a string attached 0.1 m from end B.

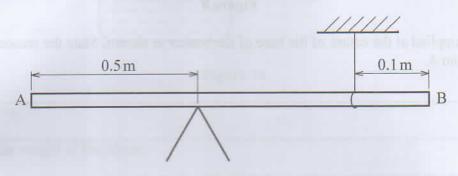


Figure 7

Determine the tension in the string. (take $g = 10 Nkg^{-1}$)	(2 marks)
8 енцу	
	Jacobin why

13. Figure 8 shows two pieces of ice A and B trapped using a wire gauze in a large beaker containing water.

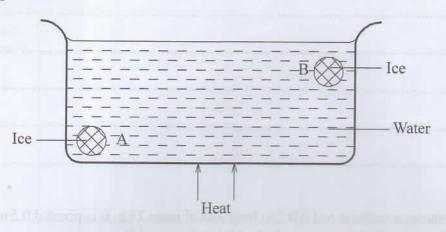


Figure 8

Heat is supplied at the centre of the base of the beaker as shown. State the reason why B melted earlier than A. (1 mark)
Vigure 7

14. Figure 9 shows a folded piece of paper. A stream of air is blown underneath the paper.

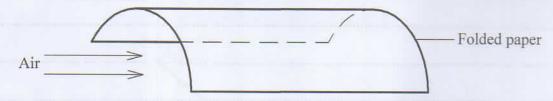


Figure 9

Explain why the paper collapsed.	(2 marks)

A133

SECTION B (55 marks)

Answer all the questions in this section in the spaces provided.

15. (a) Figure 10 shows a wooden block of volume 90 cm^3 floating with $\frac{1}{3}$ of its body submerged in water of density 1 g cm^{-3} . $(g = 10 \text{ Nkg}^{-1})$

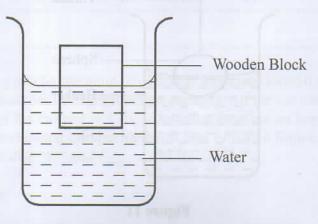


Figure 10

Determine:

(i)

(ii)

the weight of the block.	(3 marks)
input in essitent	
the weight of a metal block that can be placed onto the block so the same level as the water surface.	that its top surface is on (3 marks)

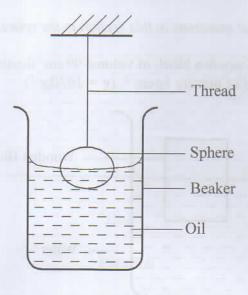


Figure 11

(i)	Other than upthrust, list two other forces acting on the sphere.	(2 marks)
	Ils weight at the block.	
(ii)	The oil is carefully and gradually drawn from the beaker. State the eff of the two forces in 15(b)(i).	ect on each (2 marks)
		······································

16.	(a)	Defir	ne the term "specific latent heat of fusion."	(1 mark)

	(b)	100° temp surro	of mass 5 g at a temperature of -10 °C is immersed into 1 °C in a container of negligible heat capacity. All the ice returns of the mixture is 40 °C. Assuming there are no hounding and taking the specific latent heat of fusion for it $c_{er} = 4200 Jkg^{-1}K^{-1}$ and $C_{ice} = 2100 Jkg^{-1}K^{-1}$).	melts and the final leat losses to the
)		Dete	rmine the:	
		(i)	heat lost by the hot water.	(3 marks)
				Vigner 13 spores he
				Market ballyan
		(ii)	heat gained by ice from -10 °C to 0 °C.	(2 marks)
)				
		(iii)	heat required to melt the ice in terms of L_f .	(1 mark)

(iv)	heat gained by the melted ice.	(2 marks)
		••••••
(v)	specific latent heat of fusion of ice.	(3 marks)
		(

17. Figure 12 shows a hydraulic lift system. The radius of the small piston is 5.64 cm while that of the large piston is 14.24 cm. The small piston is operated using a lever. A force of 100 N is applied to the lever.

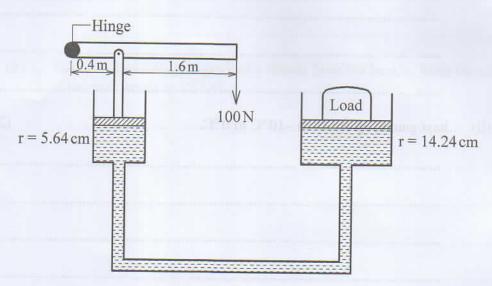
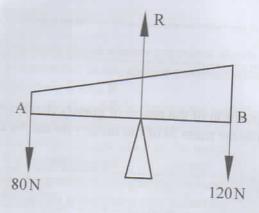


Figure 12

	Deterr	mine the:		
	(a)	pressure exerted by the smaller piston.	1	(5 marks)
	(b)	load that can be lifted.		(3 marks)
	(0)	barrens		
•				
	(c)	mechanical advantage of the system.	((3 marks)

supplierance rectal block of name 800 kg. The impact takes 2 wounds before the two new together, Determine the impulsive lines.



	18.	(a)	A bus	moving initially at a velocity of 20 ms ⁻¹ decelerates uniformly at 2 ms ⁻² .	
			(i)	Determine the time taken for the bus to come to a stop.	(3 marks)
9			(ii)	Sketch the velocity – time graph for the motion of the bus up to the time stopped.	it (2 marks)
356					
			(iii)	Use the graph to determine the distance moved by the bus before stopping	ng. (1 mark)
A133					
		(b)	station	of mass 1000 kg travelling at a constant velocity of 40 ms ⁻¹ collides with nary metal block of mass 800 kg. The impact takes 3 seconds before the tweer. Determine the impulsive force.	

19. (a	State two conditions pages of the state of t
	State two conditions necessary for a body to be in equilibrium. (2 marks
	••••••
(b)	Figure 12 -1

(b) Figure 13 shows a non-uniform log of wood AB of length 4m. The log is held horizontally by applying forces of 80N at end A and 120N at end B.

Determine:

(i)	the value of R.	
		(1 mark)
		•••••
(ii)	the position Ca	
(11)	the position of the centre of gravity of the log from end B.	(3 marks)

(c)	You a	re provided with a metre rule, a knife edge and a mass m_{I}
	(i)	Describe how the position of the centre of gravity of the metre rule can be determined using the knife edge. (2 marks)
		rest antelligant to MA Leaving colones (language with the Colones) A Rest (magnificant (language))
	(ii)	Using the position of the centre of gravity determined in $19(c)(i)$ and the mass m_{j} , describe how the mass M of the metre rule can be determined. (4 marks)
	(c)	(ii)

THIS IS THE LAST PRINTED PAGE.

