TEACHER.CO.KE

Kenya Certificate of Secondary Education

KCSE 2021

PHYSICS –

Paper 1

March. 2022 - 2hours

MARKING SCHEME

SECTION A (25 MARKS)

4	In a Physics experiment, a student filled a burette with water up to a level of 15ml. The student ran out 3 drops of water each of volume 2cm ³ from the burette into a beaker. Determine the final reading of the burette. (3 marks) Expected response	1 <i>ml</i>
	Initial burette reading = $15ml$	$= 1 cm^3$
	$= 6cm^3$	
	New burette reading = 15cm ³ + 6cm ³ = 21cm ³	
5	State two factors that affect the angular velocity of a body moving in a circular path. (2 marks)	
	 Expected response ➢ The instantaneous linear velocity of the moving body ➢ The radius of the circular path 	
6	Figure 4 shows two capillary tubes X and Y of different diameters dipped in mercury.	
	X Y	
	Figure 4	
	Complete the diagram to show the meniscus in Y	
	Expected response	

KCSE 2021, PAPER 1

SECTION B (55 MARKS)

KCSE 2021, PAPER 1

(i) heat lost by the water. (3 marks) **Expected** response Heat lost by the water = $m_w c_w \Delta \theta$ $0.0105 \times 4200 \times (100 - 40)$ = 2646*J* (ii) heat gained by ice from -10° C to 0° C **Expected** response Heat gained by ice upto $0^{\circ}C = m_{ice}c_{ice}\Delta\theta$ $0.005 \times 2100 \times 10$ = **105***I* (iii) heat required to melt the ice in terms of L_f (1 mark) **Expected** response mLf $0.005L_{f}$ (iv) heat gained by the melted ice. (2 marks) **Expected** response Heat gained by melted ice = $m_{ice}c_{ice}\Delta\theta$ $0.005 \times 4200 \times 40$ = **840***I* (v) specific latent heat of fusion. (3 marks) **Expected** response heat lost by hot water = heat gained by ice $(-10^{\circ}\text{C to } 0^{\circ}\text{C})$ + melting ice + mealted ice upto 40°C $2646J = 105J + 0.05L_f + 840J$ $L_f = 340, 200J$

KCSE 2021, PAPER 1

b) A car of mass 1000kg travelling at a constant velocity of $40ms^{-1}$ collides with a stationary metal block of mass 800kg. This impact takes 3 seconds before the two move together. Determine the impulsive force. (4 marks) **Expected** response $m_1v_1 + m_2v_2 = v(m_1 + m_2)$ $(1000 \times \hat{40}) + (\hat{800} \times 0) = v(1000 + 800)$ = 22.22 m/sv = u + at22.22 = 40 + 3a $a = -5.93 m/s^2$ (decelerating) F = ma 1800×-5.93 = 10674N19 a) State two conditions necessary for a body to be in equilibrium. (2 marks) **Expected** response Sum of clockwise moments about a point must be equal to the sum of anti-clockwise moments about the same point. > For a system of parallel forces in equilibrium, sum of forces in either direction is equal. **b**) Figure 13 shows a non-uniform log of wood AB of length 4m. The log is held horizontally by applying forces of 80N at end A and 120N at end Β. R В 120N 80N Determine: (i) the value of R. (1 mark)

THIS IS THE LAST PRINTED PAGE